• Title/Summary/Keyword: Cyclic plate load test

Search Result 68, Processing Time 0.024 seconds

Behavior of Geogrid-Reinforced Soil with Cyclic plate Load Test (반복 평판재하시험을 통한 지오그리드 보강지반의 거동 특성)

  • 신은철;김두환;이상조;이규진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.285-292
    • /
    • 1999
  • The cyclic plate load test were peformed to determine the behavior of reinforced soft ground with multiple layers of geogrid. Five series of test were conducted with varying the soil profile conditions which including the ground level, type of soil, and the thickness of each soil layer. The plate load test equipment was slightly modified to apply the cyclic load. Based on the cyclic plate load test results, the bearing capacity ratio(BCR), subbase modules, shear modules, the elastic rebound ratio, and reinforcing parameters are presented.

  • PDF

Behavior of High-Speed Rail Roadbed Reinforced by Geogrid under Cyclic Loading (지오그리드로 보강한 고속철도 노반의 거동 특성)

  • 신은철;김두환
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.84-91
    • /
    • 2000
  • The general concept of reinforced roadbed in the high-speed railway is to cope with the soft ground for the bearing capacity and settlement of foundation soil. The cyclic plate load tests were performed to determine the behavior of reinforced ground with multiple layers of geogrid underlying by soft soil. With the test results, the bearing capacity ratio, elastic rebound ratio, subgrade modulus and the strain of geogrids under loading were investigated. Based on these plate load tests, laboratory model tests under cyclic loading were conducted to estimate the effect of geogrid reinforcement in particular for the high-speed rail roadbed. The permanent settlement and the behavior of earth pressure in reinforced roadbed subjected to a combination of static and dynamic loading are presented.

  • PDF

Behaviour of geocell reinforced soft clay bed subjected to incremental cyclic loading

  • Hegde, A.;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.405-422
    • /
    • 2016
  • The paper deals with the results of the laboratory cyclic plate load tests performed on the reinforced soft clay beds. The performances of the clay bed reinforced with geocells and geocells with additional basal geogrid cases are compared with the performance of the unreinforced clay beds. From the cyclic plate load test results, the coefficient of elastic uniform compression ($C_u$) was calculated for the different cases. The $C_u$ value was found to increase in the presence of geocell reinforcement. The maximum increase in the $C_u$ value was observed in the case of the clay bed reinforced with the combination of geocell and geogrid. In addition, 3 times increase in the strain modulus, 10 times increase in the bearing capacity, 8 times increase in the stiffness and 90% reduction in the settlement was observed in the presence of the geocell and geogrid. Based on the laboratory test results, a hypothetical case of a prototype foundation subjected to cyclic load was analyzed. The results revealed that the natural frequency of the foundation-soil system increases by 4 times and the amplitude of the vibration reduces by 92% in the presence of the geocells and the geogrids.

Cyclic tests and numerical study of composite steel plate deep beam

  • Hu, Yi;Jiang, Liqiang;Zheng, Hong
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2017
  • Composite steel plate deep beam (CDB) is proposed as a lateral resisting member, which is constructed by steel plate and reinforced concrete (RC) panel, and it is connected with building frame through high-strength bolts. To investigate the seismic performance of the CDB, tests of two 1/3 scaled specimens with different length-to-height ratio were carried out under cyclic loads. The failure modes, load-carrying capacity, hysteretic behavior, ductility and energy dissipation were obtained and analyzed. In addition, the nonlinear finite element (FE) models of the specimens were established and verified by the test results. Besides, parametric analyses were performed to study the effect of length-to-height ratio, height-to-thickness ratio, material type and arrangement of RC panel. The experimental and numerical results showed that: the CDBs lost their load-carrying capacity because of the large out-of plane deformation and yield of the tension field formed on the steel plate. By increasing the length-to-height ratio of steel plate, the load-carrying capacity, elastic stiffness, ductility and energy dissipation capacity of the specimens were significantly enhanced. The ultimate loading capacity increased with increasing the length-to-height ratio of steel plate and yield strength of steel plate; and such capacity increased with decreasing of height-to-thickness ratio of steel plate and gap. Finally, a unified formula is proposed to calculate their ultimate loading capacity, and fitting formula on such indexes are provided for designation of the CDB.

Cyclic Behavior of Interior Joints in Post Tensioned Flat Plate Slab Systems (내부 포스트 텐션 플랫 플레이트 슬래브 기둥 접합부의 이력거동)

  • Kee Seong Hoon;Han Sang Whan;Ha Sang-Su;Lee Li Ryung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.107-110
    • /
    • 2005
  • In general, post tensioned (PT) flat plate slab systems have been used as a Gravity Load Resisting System (GLRS) in buildings. Thus, these systems should be constructed with Lateral Force Resisting Systems (LFRS) such as shear walls and moment resisting frames. When lateral loads such as winds or earthquakes occur, lateral load resisting systems undergo displacement by which connected gravity systems experience lateral displacement. Therefore, GLRS should have some lateral displacement capacity in order to hold gravity loads under severe earthquakes and winds. Since there are the limited number of researches on PT flat plate slab systems, the behavior of the systems have not been well defined. This study investigated the cyclic behavior of post tensioned flat plate slab systems. For this purpose, an experimental test was carried out using 4 interior PT flat plate slab-column specimens. All specimens have bottom reinforcement in the slab around the slab-column connection. Test variables of this experimental study are vertical load level and tendon distribution patterns.

  • PDF

A Study on Evaluation of Residual Stress Redistribution for FCA Butt Weldment of Ultra-Thick YP47 Steel Plate under Tensile Cyclic Load (반복 인장 하중을 받는 YP47 극후판 Butt 용접부의 잔류응력 재분포에 관한 연구)

  • Kang, Bong Gook;Lee, Dong Ju;Shin, Sang Beom
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.28-33
    • /
    • 2016
  • The purpose of this study is to evaluate the redistribution of transverse residual stress in the multi-pass FCA butt weld of YP47 in the hatch coaming top plate of ultra large size containership under the tensile cyclic load. In order to do it, the configuration of modified H type specimen including restraint length was first designed to simulate the restraint condition of the butt weld in hatch coaming top plate. FE analysis procedure for evaluating the transverse residual stress was verified by comparing the calculated mean and surface residual stresses with the measured results in the test specimen. After that, the effect of the cyclic load on the redistribution of transverse residual stress was evaluated by comprehensive FEA. From the results, it was found that although the maximum transverse residual stress decreased with an increase in the applied maximum load, the effect of the cyclic load on the mean residual stress is small enough to be negligible. It is because the maximum stress of the ship corresponding to the probability of 10E-8 is less than 70% of yield stress of the weld.

Improvement of pavement foundation response with multi-layers of geocell reinforcement: Cyclic plate load test

  • Khalaj, Omid;Tafreshi, Seyed Naser Moghaddas;Mask, Bohuslav;Dawson, Andrew R.
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.373-395
    • /
    • 2015
  • Comprehensive results from cyclic plate loading at a diameter of 300 mm supported by layers of geocell are presented. The plate load tests were performed in a test pit measuring $2000{\times}2000mm$ in plane and 700 mm in depth. To simulate half and full traffic loadings, fifteen loading and unloading cycles were applied to the loading plate with amplitudes of 400 and 800 kPa. The optimum embedded depth of the first layer of geocell beneath the loading plate and the optimum vertical spacing of geocell layers, based on plate settlement, are both approximately 0.2 times loading plate diameter. The results show that installation of the geocell layers in the foundation bed, increase the resilient behavior in addition to reduction of accumulated plastic and total settlement of pavement system. Efficiency of geocell reinforcement was decreased by increasing the number of the geocell layers for all applied stress levels and number of cycles of applied loading. The results of the testing reveal the ability of the multiple layers of geocell reinforcement to 'shakedown' to a fully resilient behavior after a period of plastic settlement except when there is little or no reinforcement and the applied cyclic pressure are large. When shakedown response is observed, then both the accumulated plastic settlement prior to a steady-state response being obtained and the resilient settlements thereafter are reduced. The use of four layers of geocell respectively decreases the total and residual plastic settlements about 53% and 63% and increases the resilient settlement 145% compared with the unreinforced case. The inclusion of the geocell layers also reduces the vertical stress transferred down through the pavement by distributing the load over a wider area. For example, at the end of the load cycle of the applied pressure of 800 kPa, the transferred pressure at the depth of 510 mm is reduced about 21.4%, 43.9%, 56.1% for the reinforced bases with one, two, and three layers of geocell, respectively, compared to the stress in the unreinforced bed.

Evaluation of Field Nonlinear Modulus of Subgrnde Soils Using Repetitive Static Plate Bearing Load Test (반복식 평판재하시험을 이용한 노상토의 현장 변형계수 평가)

  • Kim Dong-Soo;Seo Won-Seok;Kweon Gi-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.67-79
    • /
    • 2005
  • The field plate load test has a good potential for determining modulus since it measures both plate pressure and settlement. Conventionally the modulus has been assumed to be a constant secant value defined from the settlement of the plate at a given load intensity. A constant modulus (modulus of subgrade reaction, k), however, may not be a representative value of subgrade soil under working load. Field strain(o. stress)-dependent modulus characteristics of subgrade soils, at relatively low to intermediate strains, are important in the pavement design. In this study, the field strain dependent moduli of subgrade soils were obtained using cyclic plate load test. Testing procedure and data reduction method are proposed. The field crosshole and laboratory resonant column tests were also performed to determine field nonlinear modulus at $0.001\%\;to\;0.1\%$ strains, and the modulus values and nonlinear trends are compared to those obtained by cyclic plate load tests. Both modulus values match relatively well when the different state of stress between two tests was considered, and the applicability of field cyclic plate load test for determining nonlinear modulus values of subgrade soils is verified.

Investigation of Damping Ratio of Steel Plate Concrete (SC) Shear Wall by Lateral Loading Test & Impact Test (횡방향 가력실험 및 충격실험을 통한 강판콘크리트(SC) 전단벽의 감쇠비 평가)

  • Cho, Sung Gook;So, Gi Hwan;Park, Woong Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.79-88
    • /
    • 2013
  • Steel plate concrete (SC) composite structure is now being recognized as a promising technology applicable to nuclear power plants as it is faster and suitable for modular construction. It is required to identify its dynamic characteristics prior to perform the seismic design of the SC structure. Particularly, the damping ratio of the structure is one of the critical design factors to control the dynamic response of structure. This paper compares the criteria for the damping ratios of each type of structures which are prescribed in the regulatory guide for the nuclear power plant. In order to identify the damping ratio of SC shear wall, this study made SC wall specimens and conducted experiments by cyclic lateral load tests and vibration tests with impact hammer. During the lateral loading test, SC wall specimens exhibited large ductile capacities with increasing amplitude of loading due to the confinement effects by the steel plate and the damping ratios increased until failure. The experimental results show that the damping ratios increased from about 6% to about 20% by increasing the load from the safe shutdown earthquake level to the ultimate strength level.

Cyclic behavior of extended end-plate connections with European steel shapes

  • Akgonen, Aliriza I.;Yorgun, Cavidan;Vatansever, Cuneyt
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1185-1201
    • /
    • 2015
  • The aim of this experimental research is to investigate the conformity of the four-bolt unstiffened moment end-plate connections consisting of European steel sections which do not meet the limitations specified for beam flange width and overall beam depth in ANSI/AISC 358-10 to the requirements of seismic application. However, the connections are satisfactory with the limitations required by Turkish Earthquake Code. For this purpose, four test specimens were designed and cyclic load was applied to three specimens while one was tested under monotonic loading to provide data for the calibration of the analytical models. The moment-rotation hysteresis loops and the failure modes for all test specimens are presented. A full three-dimensional finite element model is also developed for each test specimen for use to predict their behavior and to provide a tool for generating subsequent extensive parametric studies. The test results show that all specimens performed well in terms of rotation capacity and strength. Finite element models are found to be capable of approximating the cyclic behavior of the extended end-plate connection specimens.