• Title/Summary/Keyword: Cyclic oxidation-reduction

Search Result 118, Processing Time 0.024 seconds

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

Effects of Rice Straw and Gypsum on the Changes of Urease, Nitrate Reductase and Nitrite Reductase Activities in Saline Paddy Soil (간척답토양(干拓沓土壤)에 볏짚 및 석고시용(石膏施用)이 뇨효소(尿酵素), 초산환원효소(硝酸還元酵素) 및 아초산환원효소(亞硝酸還元酵素)의 활성(活性)에 미치는 영향(影響))

  • Lee, Sang Kyu;Kim, Young Sig;Hwang, Seon Woong;Park, Jun Kyu;Chang, Young Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.1
    • /
    • pp.105-110
    • /
    • 1985
  • A incubation study was conducted to find out the effects of rice straw and gypsum as soil ameriolite on urease, nitrate and nitrite reductase activities in newly reclaimed saline sandy soil. The results obtained were summarized as follows: 1. Very low urease activities were observed in saline soil if contrast to high productive paddy soil. Urease activities were lower at 5 days than that of 25 and 50 days after incubation. Remarkably high urease activities were obtained by the application of rice straw and gypsum. 2. Comparing with NPK treatment, application of rice straw and gypsum were enhanced the activities of nitrate and nitraite reductase. 3. Positive correlation (r=0.5501 p=0.05) was obtained between urease activities and ammonium nitrogen concentration in soil. 4. Cyclic oxidation and reduction of nitrate and nitrite in soil were obtained in terms of first order microbial kinetics reaction in case of application of rice straw and gypsum, respectively. 5. Positive correlation (r=0.6296 p=0.05) was obtained between the activitie of nitrite reductase and nitrate reductase in soil.

  • PDF

Variations of the Electrochemical Properties of LiMn2O4 with the Calcining Temperature

  • Song, Myoung-Youp;Shon, Mi-suk
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.523-527
    • /
    • 2002
  • LiMn$_2$O$_4$ compounds were synthesized by calcining a mixture of LiOH and MnO$_2$(CMD) at 47$0^{\circ}C$ for 10 h and then calcining again at $650^{\circ}C$ to 90$0^{\circ}C$ fur 48 h in air with intermediate grinding. All the synthesized samples exhibited XRD patterns for the cubic spinel phase with a space group Fd3m. The lattice parameter increased gradually as the sintering temperature rose. The electrochemical cells were charged and discharged fur 20 cycles at a current density 300$\mu$A/$\textrm{cm}^2$ between 3.5 V and 4.3 V. The voltage vs. discharge capacity curves for all the samples showed two plateaus. The LiMn$_2$O$_4$ sample calcined at 90$0^{\circ}C$ had the largest first discharge capacity. This sample exhibited the best crystallinity, had relatively large lattice parameter and had relatively large particles with rectatively homogeneous size. All the samples showed good cycling performances. Among all the samples, the LiMn$_2$O$_4$ calcined at 85$0^{\circ}C$ had relatively large first discharge capacity and very good cycling performance. The addition of excess LiOH and the mixing in ethanol considered to help the formation of the more LiMn$_2$O$_4$ phase per unit weight sample and the more stable LiMn$_2$O$_4$phase. These led to the larger discharge capacities and the better cycling performances. The cyclic voltammograms fur the second cycle of the LiMn$_2$O$_4$ samples showed the oxidation and reduction peaks around 4.05 V and 4.18 V and around 4.08 V and 3.94 V, respectively. The larger first discharge capacity of the sample calcined at the higher temperature is related to the larger lattice parameter.

Electrode Fabrication and Electrochemical Characterization of a Sealed Ni-MH Battery for Industrial Use (산업용 밀폐형 니켈수소전지의 전극 제조 및 전기화학적 특성)

  • An, Yang-Im;Kim, Sae-Hwan;Jo, Jin-Hun;Kim, Ho-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.289-296
    • /
    • 2008
  • Electrochemical studies were performed by a half-cell test for the nickel hydroxide (cathode) and hydrogen storage alloy(anode) electrodes for the sealed Ni-MH batteries applicable to industrial use. The electrodes were fabricated and checked a charge efficiency and an internal pressure of the battery during charge-discharge cycling. In order to reduce the internal pressure of the sealed Ni-MH battery, cyclic voltammetry (CV) were performed on the electrodes of nickel hydroxide(cathode) and hydrogen storage alloy(anode), respectively. The results of the test showed clearly the oxidation/reduction and oxygen evolution reaction in a nickel hydroxide electrode and the hydrogenation behavior of a hydrogen storage electrode. The sealed Ni-MH battery of 130Ah was fabricated by using nickel hydroxide of a high over-voltage for an oxygen gas evolution and hydrogen storage alloy of a good performance for activation The battery showed a good characteristics such as a high charge efficiency of 98% at 1 C charge current, a low level internal pressure of 4 atm on a continuous over-charging and a large preservation capacity of 95% at 400 cycle.

Synthesis and Electrochemical Properties of Carbon Coated Li4Ti5O12 using PVC (PVC를 원료로 탄소코팅한 Li4Ti5O12의 합성 및 전기화학적 특성)

  • Hyun, Si-Cheol;Na, Byung-Ki
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.77-84
    • /
    • 2018
  • In this study, $Li_4Ti_5O_{12}$ anode materials for lithium ion battery were synthesized by dry ball-mill method. Polyvinyl chloride (PVC) as a carbon source was added to improve electrochemical properties. When the PVC was added after $Li_4Ti_5O_{12}$ formation, the spinel structure was well synthesized and it was confirmed by X-ray diffraction (XRD) experiments. When the carbon material was added before the synthesis and the heat treatment was performed, it was confirmed that a material having a different crystal structure was synthesized even when a small amount of carbon material was added. In the case of $Li_4Ti_5O_{12}$ without the carbon material, the electrical conductivity value was about $10{\mu}S\;m^{-1}$, which was very small and similar to that of the nonconductor. As the carbon was added, the electrical conductivity was greatly improved and increased up to 10,000 times. Electrochemical impedance spectroscopy (EIS) analysis showed that the size of semicircle corresponding to the resistance decreased with the carbon addition. This indicates that the resistance inside the electrode is reduced. According to the Cyclic voltammetry (CV) analysis, the potential difference between the oxidation peak and the reduction peak was reduced with carbon addition. This means that the rate of lithium ion insertion and deinsertion was increased. $Li_4Ti_5O_{12}$ with 9.5 wt% PVC added sample showed the best properties in rate capabilities of $180mA\;h\;g^{-1}$ at 0.2 C-rate, $165mA\;h\;g^{-1}$ at 0.5 C-rate, and $95.8mA\;h\;g^{-1}$ at 5 C-rate.

Electrochemical Propertics and Oxidation Reaction of Hydrazobenzene by Oxygen Adducted Tetradentate Schiff Base Cobalt(II)(3MeOSED) Activated Catalyst in Aprotic Solvents(I) (비수용매에서 산소첨가된 네자리 Schiff Base Cobalt(II)(3MeOSED) 활성촉매에 의한 Hydrazobenzene의 산화반응과 전기화학적 성질 (제 1 보))

  • Ki-Hyung Chjo;Yong-Kook Choi;Sang-Bock Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.261-272
    • /
    • 1992
  • Tetradentate Schiff base Cobalt(II)(3MeOSED)$(H_2O)_2$ complexe was synthesized and allowed to react with dry oxygen to form oxygen adducts of Cobalt(III) complexes such as ${\mu}$-peroxo type [Co(III)(3MeOSED)(DMF)]$_2O_2$ and [Co(III)(3MeOSED)(DMSO)]$_2O_2$in DMF and DMSO or superoxo type [Co(III)(3MeOSED)(Py)]$O_2$ in pyridine. The oxygen adducted complex was investigated by cyclic voltammetry and DPP method with glassy carbon electrode in 0.1M TEAP-DMF (-DMSO,-Py) as supporting electrolyte solution. As a result the reduction reaction process occurred to four steps including prewave Of $O_2^-$in 1 : 1 oxygen adducted superoxo type [Co(III)(3MeOSED)(Py)]$O_2$complex and three steps not including prewave of $O_2^-$ in 1 : 2 oxygen adducted ${\mu}$-peroxo type [Co(III)-(3MeOSED)(DMF)]$_2O_2$ and [Co(III)(3MeOSED)(DMSO)]$_2O_2$. A superoxo type [Co(III)(3MeOSED)(L)]$O_2\;(L: CH_3OH)$ was generated with oxygen in methanol. Selectively oxidized hydrazobenzene $(H_2AB)$ to trans-azobenzene(t-AB) and the rate constant k for oxidation reaction of the following equation is $(2.96 {\pm} 0.2)$${\times}$ $10^{-1}$M/sec. $H_2AB$ + Co (II)(3MeOSED)$(L_2)+O_2\;{\rightleftarrow^K}$ [Co(III)(3MeOSED)(L)]$O_2{\cdot}H_2AB{\longrightarrow^K}$ Co(II(3MeOSED)$(L)_2$+t-AB+$H_2O_2 $.

  • PDF

Comparison of the Effects of Cyclodextrin-Naringin Inclusion Complex with Naringin on Lipid Metabolism in Mice Fed a High-Fat Diet (고지방식이를 섭취한 마우스에서 나린진과 나린진-사이클로텍스트린 포접화합물의 지질대사에 대한 영향 비교)

  • Jeon, Seon-Min;Choi, Myung-Sook
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.1
    • /
    • pp.20-29
    • /
    • 2010
  • Naringin has antioxidant and antihyperlipidemic properties, however, phenolic compounds including naringin are unstable in the presence of light, heat and oxygen. Beta-cyclodextrin ($\beta$-CD) is a cyclic heptamer composed of seven glucose units that enhances the stability and solubility of molecules through the formation of inclusion complexes. This study was conducted out to compare the effects of CD-naringin (CD-N) inclusion complexes with naringin on lipid metabolism in high fat-fed animals. Male C57BL/6 mice were fed either CD-N (0.048%, w/w) or naringin (N, 0.02%, w/w) in a 20% high-fat (HFC, 15% lard, 5% corn oil, w/w) diet for 10 weeks. Orlistat (Xenical, 0.01%, w/w) was used as a positive control (PC). There were no differences in body weight, food intake, liver and heart weights, plasma triglyceride(TG), leptin, adiponectin, resistin, IL-$1{\beta}$ and IL-6 concentrations, and hepatic $\beta$-oxidation, carnitine palmitoyl transferase(CPT), glucose-6-phosphate dehydrogenase (G6PD) and malic enzyme activities between the HFC and CD-N groups or between the HFC and N groups. However, both CD-naringin and naringin supplementation les to a significant reduction in the epididymal and perirenal white adipose tissue weights, plasma free fatty acid, insulin and blood glucose concentrations, hepatic cholesterol and TG contents and hepatic fatty acid synthase (FAS), phosphatidate phosphohydrolase (PAP) and HMG-CoA reductase activities compared to the HFC group. The plasma HDL-cholesterol concentration was significantly higher in CD-N and N groups than in HF and PC groups. These results indicate that both CD-naringin and naringin supplementation effectively improved plasma and hepatic lipid metabolism without differences between CD-N and naringin groups.

Voltammetric Sensor Incorporated with Conductive Polymer, Tyrosinase, and Ionic Liquid Electrolyte for Bisphenol F (전도성고분자, 티로시나아제 효소 및 이온성 액체 전해질을 융합한 전압전류법 기반의 비스페놀F 검출 센서)

  • Sung Eun Ji;Sang Hyuk Lee;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2023
  • In this study, conductive polymers and the enzyme tyrosinase (Tyr) were deposited on the surface of a screen printed carbon electrode (SPCE), which can be fabricated as a disposable sensor chip, and applied to the detection of bisphenol F (BPF), an endocrine disruptor with proven links to male diseases and thyroid disorders, using electrochemical methods. On the surface of the SPCE working electrode, which was negatively charged by oxygen plasma treatment, a positively charged conductive polymer, poly(diallyldimethyl ammonium chloride) (PDDA), a negatively charged polymer compound, poly(sodium 4-styrenesulfonate) (PSS), and another layer of PDDA were layered by electrostatic attraction in the order of PDDA, PSS, and finally PDDA. Then, a layer of Tyr, which was negatively charged due to pH adjustment to 7.0, was added to create a PDDA-PSS-PDDA-Tyr sensor for BPF. When the electrode sensor is exposed to a BPF solution, which is the substrate and target analyte, 4,4'-methylenebis(cyclohexa-3,5-diene-1,2-dione) is generated by an oxidation reaction with the Tyr enzyme on the electrode surface. The reduction process of the product at 0.1 V (vs. Ag/AgCl) generating 4,4'-methylenebis(benzene-1,2-diol) was measured using cyclic and differential pulse voltammetries, resulting in a change in the peak current with respect to the concentration of BPF. In addition, we compared the detection performance of BPF using an ionic liquid electrolyte as an alternative to phosphate-buffered saline, which has been used in many previous sensing studies. Furthermore, the selectivity of bisphenol S, which acts as an interfering substance with a similar structure to BPF, was investigated. Finally, we demonstrated the practical applicability of the sensor by applying it to analyze the concentration of BPF in real samples prepared in the laboratory.