• Title/Summary/Keyword: Cyclic loads

Search Result 478, Processing Time 0.032 seconds

Damage Assessment of RC Column-Bent Pier under Bidirection Loading (이축 하중을 받는 이주형 철근콘크리트 교각의 손상도평가)

  • Park Chang Kyu;Lee Beom Gi;Yun Sang Chul;Chung Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.203-206
    • /
    • 2005
  • Reinforced concrete(RC) column-bent piers represent one of the popular piers used in highway bridges of Korea. Seismic performance of RC column-bent piers under bi-directional seismic loadings was experimentally investigated. Six column bent piers were constructed with two circular supporting columns which were made in 400 mm diameter and 2,000 mm height. Test parameters are different transverse reinforcement ratio and loading pattern. Three specimens were loaded with bi-directional lateral forces which were main cyclic loads in the longitudinal direction and sub-cyclic loads in the transverse direction. Other three specimens were loaded in the opposite way. Test results indicated that lateral strength and ductility of the latter specimens were bigger than those of the former specimens. Plastic hinge was formed with the spall of cover concrete and the fracture of the longitudinal reinforcing steels in the bottom part of two supporting columns for the former three specimens. Similar behavior was observed in the top and bottom parts of two supporting columns for the latter three specimens.

  • PDF

A Study on the Behavior of Staturated Sandy Soils Under Dynamic Loads using Disturbed State Concept (교란상태개념모델을 이용한 포화사질토의 동적거동에 관한 연구)

  • 정철민;박인준;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.193-201
    • /
    • 2000
  • 교란상태개념(Disturbed State Concept;DSA)모델릉 이용하여 포화사질토의 동역학적 거동을 모사하는 예측기법을 개발하였다. 실내진동전단시험 자료로부터 DSC모델 매개변수를 찾고, DSC 모델을 이용하여 전개한 응력중분과 변형률중분의 관계를 표현하는 탄소성구성방정식으로부터 진동하중을 받는 지반재료의 간극수압 및 유효응력 변화, 그리고 축자응력-축방향변형률 거동을 예측하였다. 압축 및 인장 재하시에는 DSC모델을 사용하여 변형률 경화(strain-hardening)및 진동하중에 의한 변형률 연화(cyclic-softening)현상을 모사하고, 제하(unloading)시에는 선형탄성모델을 사용하여 근사화하였다. 예측 결과를 실내전단시럼 결과와 비교하여 예측기법을 검증하였다.

  • PDF

Experimental Study on the Hysteretic Behavior of R/C Low-Rise Shear Walls under Cyclic Loads (반복하중을 받는 철근콘크리트 저형 전단벽의 이력거동에 관한 실험적 연구(II) -바벨형 단면(Barbell Shape)의 내력과 연성을 중심으로-)

  • 최창식;이용재;윤현도;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.68-73
    • /
    • 1991
  • Results of an experimental investigation of low-rise reinforced concrete shear walls with barbell cross section under cyclic loads are discussed and evaluated. Four halr scale models of test specimens with height to length ratio of 0.75 were experimented. The dimension of all walls is 1500mm wide $\times$ 950 mm high $\times$ 100 mm thick and the section of all boundary column at both ends is 200 mm $\times$ 200mm. Main variables are : design concept, vertical flexural reinflrcement ratios and reinforcement details(including crossed diagonal shear reinforcement in SW7 specimen). In SW7 specimen, maximum strength and consequently dissipating energy index were 1.45 and 1.28 times greater than those of SW6 specimen, respectively.

  • PDF

Behavior of Steel Beam-High Strength Concrete Column Joint Subjected to Cyclic Loadings (철골보-고강도 콘크리트 기둥 접합부의 거동에 관한 연구)

  • Shin, Sung-Woo;Lee, Kwang-Soo;Seo, Seon-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.3
    • /
    • pp.205-210
    • /
    • 2000
  • The objective of this study is to investigate the structural behavior of steel beam-high strength concrete column joints subjected to reversed cyclic loadings. The variables of the experimental study is amount of steel plates at the beam-to-column joint panel zone. Three specimens were prepared and tested under constant uniaxial load($0.2f_{ck}A_g$) to reinforced high strength concrete column, and the reversed cyclic loads were applied to end of steel beams, The failure modes, hysteresis loop, stiffness degradations and energy dissipation capacities were analyzed and compared for test variables.

  • PDF

Cyclic behavior of interior beam-column connections in non-seismic RC frames at different loading rates

  • Dhakal, Rajesh P.;Pan, Tso-Chien
    • Structural Engineering and Mechanics
    • /
    • v.23 no.2
    • /
    • pp.129-145
    • /
    • 2006
  • This paper provides an insight into the response of non-seismic reinforced concrete (RC) building frames to excitations of different frequencies through experimental investigation. The results of cyclic loading tests of six full-scale RC beam-column sub-assemblies are presented. The tested specimens did not have any transverse reinforcement inside the joint core, and they were subjected to quasi-static and dynamic loading with frequencies as high as 20 Hz. Some important differences between the cyclic responses of non-seismic and ductile RC frames are highlighted. The effect of excitation frequency on the behavior of non-seismic joints is also discussed. In the quasi-static tests, shear deformation of the joint panel accounted for more than 50% of the applied story drift. The test results also showed that higher-frequency excitations are less detrimental than quasi-static cyclic loads, and non-seismic frames can withstand a higher load and a larger deformation when they are applied faster.

Cyclic Creep Model for the Deflection Calculation of Reinforced Concrete Flexural Members under Fatigue Loads (피로하중을 받는 철근콘크리트 휨부재의 처짐산정을 위한 반복크리프 모델)

  • 오병환;김동욱
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.415-422
    • /
    • 2001
  • The present paper focuses on the development of a realistic analysis model for the deformation calculation of reinforced concrete beams subjected to fatigue loadings. The proposed model considers the effect of cyclic creep, which arises from the repeated loading, to calculate the deformation of reinforced concrete beams. A comprehensive experimental program has been set up to identify the deformation accumulation of reinforced concrete beams under repeated loadings. The major test variables were the concrete compressive strength and the magnitude of fatigue loads. The model was calibrated from the present test results. The proposed model allows more realistic analysis of reinforced concrete beams under fatigue loads, especially deformation accumulation of such beams.

Analytical Study for Performance Evaluation of Studs for Steel Plate Concrete(SC) Walls subjected to Cyclic Loads (반복하중이 가해지는 강판 콘크리트(SC) 벽체에서 스터드의 성능평가를 위한 해석적 연구)

  • Lim, Jin-Sun;Jeong, Young-Do;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.35-42
    • /
    • 2015
  • This study analytically reviewed the behavior of Steel Plate Concrete(SC) walls subjected to cyclic loads to investigate the effects of shape and arrangement spacing of studs on the behavior of SC walls. To perform it, 9 cases of finite element analyses considering the different shape and spacing of studs in SC wall were carried out. As the results, the skeleton curves were obtained from the load-displacement history curves and the ultimate and yielding forces were increased as the spacing of studs decrease. In addition, the strength of inclined studs are shown to be bigger compared to that of general studs. The damping ratios are increased as the decrease of strength ratio. Finally, as the decrease of stud spacings, the cumulative dissipated energy was increased and the seismic performance was improved.

Time-dependent Deformation Characteristics of Geosynthetic Reinforced Modular Block Walls under Sustained/cyclic Loading (지속하중 및 반복하중 재하시 보강토 옹벽의 잔류변형 특성)

  • Yoo, Chung-Sik;Kim, Young-Hoon;Han, Dae-Hui;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.5-21
    • /
    • 2007
  • Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exit concerns over long-term residual deformation when they are subjected to repeated and/or cyclic loads, especially when used as part of permanent structures. In view of these concerns, in this paper time-dependant deformation characteristics of geosynthetic reinforced modular block walls under sustained anuor repeated loads were investigated using reduced-scale model tests. The results indicated that a sustained or repeated load can yield appreciable magnitude of residual deformation, and that the residual deformations are influenced not only by the loading characteristics but by the mechanical properties of geogrid. It is also found that the preloading technique can be effectively used in controlling residual deformations of reinforced soils subjected to sustained and/or repeated loads.

Experimental Study on External Joints of Hybrid System with PC Slab under Cyclic Loads (PC 슬래브를 이용한 복합시스템 외부접합부의 반복하중에 대한 실험적 연구)

  • 이현호;이주영;정하선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.487-492
    • /
    • 1998
  • The purpose of this study is to investigate the external joints flexural of hybrid system(RPC) which is consist of precast concrete slabs and cast in site concrete walls. The external joint's specimens were prepared by types of joint detail and were tested under cyclic load which used yielding displacement. The results of external joints of hybrid system showed that the strength capacity of RPC is little different than RC and that the energy dissipation capacity of RPC is similar to RC.

  • PDF

Seismic performance assessment of steel reinforced concrete members accounting for double pivot stiffness degradation

  • Juang, Jia-Lin;Hsu, Hsieh-Lung
    • Steel and Composite Structures
    • /
    • v.8 no.6
    • /
    • pp.441-455
    • /
    • 2008
  • This paper presents an effective hysteretic model for the prediction and evaluation of steel reinforced concrete member seismic performance. This model adopts the load-deformation relationship acquired from monotonic load tests and incorporates the double-pivot behavior of composite members subjected to cyclic loads. Deterioration in member stiffness was accounted in the analytical model. The composite member performance assessment control parameters were calibrated from the test results. Comparisons between the cyclic load test results and analytical model validated the proposed method's effectiveness.