• Title/Summary/Keyword: Cyclic hardening

Search Result 154, Processing Time 0.027 seconds

Low Cycle Fatigue Behavior of 429EM Stainless Steel at Elevated Temperature (429EM 스테인리스강의 고온 저주기 피로 거동)

  • Lee, Keum-Oh;Yoon, Sam-Son;Hong, Seong-Gu;Kim, Bong-Soo;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.427-434
    • /
    • 2004
  • Ferritic stainless steel is recently used in high temperature structures because of its good properties of thermal fatigue resistance, corrosion resistance, and low price. Tensile and low-cycle fatigue (LCF) tests on 429EM stainless steel used in exhaust manifold were performed at several temperatures from room temperature to 80$0^{\circ}C$. Elastic Modulus, yield strength, and ultimate tensile strength monotonically decreased when temperature increased. Cyclic hardening occurred considerably during the most part of the fatigue life. Dynamic strain aging was observed in 200~50$0^{\circ}C$, which affects the cyclic hardening behavior. Among the fatigue parameters such as plastic strain amplitude, stress amplitude, and plastic strain energy density (PSED), PSED was a proper fatigue parameter since it maintained at a constant value during LCF deformation even though cyclic hardening occurs considerably. A phenomenological life prediction model using PSED was proposed considering the influence of temperature on fatigue life.

A Modified Parallel Iwan Model for Cyclic Hardening Behavior of Sand(II) : Verification (수정 IWAN 모델을 이용한 사질토의 반복경화거동에 대한 연구(II) : 모델 검증)

  • 이진선;김동수;추연욱;윤종구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.57-66
    • /
    • 2003
  • In order to verify the applicability of the developed modified parallel IWAN model. two types of cyclic torsional shear tests were performed using Kum-Kang and Toyoura sands. One was a symmetric-limit loading test and the other was an irregular loading test. Model parameters were derived from the symmetric limit loading tests at various relative densities and confining pressures. The modified parallel IWAN model can predict the cyclic hardening behavior of sands very well as increasing loading cycles in the symmetric-limit tests. Irregular loading tests were performed using the loading shape suggested by Pyke(1979). Cyclic behaviors under irregular loading were simulated using model parameters derived from symmetric limit loading test results of similar loading conditions. The predicted cyclic hardening behaviors under irregular loading matched well with experimental results and the applicability of the proposed model was verified.

Simulation of Ratcheting in Wheel-Rail Contact (차륜-레일의 구름접촉에 의한 라체팅 시뮬레이션)

  • Goo, Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1592-1597
    • /
    • 2009
  • Ratcheting is a cyclic accumulation of strain under a cyclic loading. It is a kind of mechanisms which generate cracks in rail steels. Though some experimental and numerical study has been performed, modeling of ratcheting is still a challenging problem. In this study, an elastic-plastic constitutive equation considering non-linear kinematic hardening and isotropic hardening was applied. Under the tangential stress of the contact stresses, a cyclic stress-strain relation was obtained by using the model. Strain under repeated cycles was accumulated.

  • PDF

A Description of Thermomechanical Behavior Using a Rheological Model (리올러지 모델을 이용한 열적 기계적 변형 거동 모사)

  • Lee Keum-Oh;Hong Seong-Gu;Lee Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.757-764
    • /
    • 2006
  • Isothermal cyclic stress-strain deformation and thermomechanical deformation (TMD) of 429EM stainless steel were analyzed using a rheological model employing a bi-linear model. The proposed model was composed of three parameters: elastic modulus, yield stress and tangent modulus. Monotonic stress-strain curves at various temperatures were used to construct the model. The yield stress in the model was nearly same as 0.2% offset yield stress. Hardening relation factor, m, was proposed to relate cyclic hardening to kinematic hardening. Isothermal cyclic stress-strain deformation could be described well by the proposed model. The model was extended to describe TMD. The results revealed that the hi-linear thermomechanical model overestimates the experimental data under both in-phase and out-of-phase conditions in the temperature range of $350-500^{\circ}C$ and it was due to the enhanced dynamic recovery effect.

Seismic Response Analyses of Seismically Isolated Structures Using the Laminated Rubber Bearings

  • Koo, Gyeong-Hoi;Lee, Jae-Han;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.387-395
    • /
    • 1998
  • In general, the laminated rubber bearing (LRB), a composite structure laminated with the elastic rubber and steel plates, has a complex hysteretic nonlinear characteristics in relationships between the restoring force and shear deflection. The representative nonlinear characteristics of LRB include the change of hysteresis loop with cyclic shear deflections and the hardening effects at large shear deflection regions. Changes of the hysteresis loop of LRB with cyclic shear deflections affect the horizontal stiffness and the damping characteristics. The hardening behavior of LRB in large shear deflection region results in an increased horizontal stiffness and therefore, has a great impacton the seismic responses. In this paper, the seismic response analysis is carried out using the modified hysteretic bi-linear model of LRB, which takes into account the hysteresis loop change and the hardening behavior with cyclic shear deflection. The results on seismic responses are compared with those obtained using the widely used hysteretic hi-linear model. The new model is found to reveal the greater amount of peak acceleration response.

  • PDF

A Study on Fatigue Strength Characteristics of Weld Joint using Metal Type Flux Cored Wire (금속계 플럭스들이 용접이음부의 피로강도 특성에 관한 연구)

  • 강성원;신동진;김환식
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.151-161
    • /
    • 1994
  • FCAW has wide application in ship fabrication, maintenance and field erection. It has many advantages over SMAW.SAW and GMAW process. In many applications, the FCAW provides highquality weld metal. This method can reduce weld defects especially porosity and spatter. But the fatigue characteristics of those deposited metal have been rarely investigated. The purpose of this study is to investigate the cyclic stress-strain behavior and fatigue tests by the constant strain control were carried out on the rounded smooth specimen with deposited metal using the metal type flux cored wire. As the results of this study for the deposited metal welded by the metal type flux cored wire, the hardening or softening characteristics under cyclic load were investigated and cyclic stress-strain curve, strain-fatigue life curve, stress-strain function and fatigue life relation which are useful to estimate the fatigue life under the stress concentration condition were obtained.

  • PDF

Experimental and numerical investigations on the ratcheting characteristics of cylindrical shell under cyclic axial loading

  • Shariati, M.;Hatami, H.;Torabi, H.;Epakchi, H.R.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.753-762
    • /
    • 2012
  • The ratcheting characteristics of cylindrical shell under cyclic axial loading are investigated. The specimens are subjected to stress-controlled cycling with non-zero mean stress, which causes the accumulation of plastic strain or ratcheting behavior in continuous cycles. Also, cylindrical shell shows softening behavior under symmetric axial strain-controlled loading and due to the localized buckling, which occurs in the compressive stress-strain curve of the shell; it has more residual plastic strain in comparison to the tensile stress-strain hysteresis curve. The numerical analysis was carried out by ABAQUS software using hardening models. The nonlinear isotropic/kinematic hardening model accurately simulates the ratcheting behavior of shell. Although hardening models are incapable of simulating the softening behavior of the shell, this model analyzes the softening behavior well. Moreover, the model calculates the residual plastic strain close to the experimental data. Experimental tests were performed using an INSTRON 8802 servo-hydraulic machine. Simulations show good agreement between numerical and experimental results. The results reveal that the rate of plastic strain accumulation increases for the first few cycles and then reduces in the subsequent cycles. This reduction is more rapid for numerical results in comparison to experiments.

State of the Art of the Cyclic Plasticity Models of Structural Steel (구조용 강재의 반복소성모델 분석 연구)

  • Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.735-746
    • /
    • 2002
  • The task of plastic theory is twofold: first, to set up relationships between stress and strain that adequately describe the observed plastic deformation of metals, and second, to develop techniques for using these relationships in studying of the mechanics of metal forming processes, and the anlaysis and design of structures. One of the major problems in the theory of plasticity is to describe the behavior of work-hardening materials in the plastic range for complex loading histories. This can be achieved by formulating constitutive laws either in the integral or differential forms. To adequately predict the response of steel members during cyclic loading, the hardening rule must account for the features of cyclic stress-strain behavior. Neithe of the basic isotropic and kinematic hardening rules is suitable for describing cyclic streess-strain behavior, although a kinematic hardening rule describes the nearly linear portions of the stabilized hystersis loops. There is also a limited expansion of the yield surface as predicted by the isotropic hardening rule. Strong ground motions or wind gusts affect the complex and nonproportional loading histories in the inelastic behavior of structues rather than the proportional loading. Nonproportional loading is defined as externally applied forces on the structure, with variable ratios during the entire loading history. This also includes the rate of time-dependency of the loads. For nonproportional loading histories, unloading may take place along a chord instead of the radius of the load surface. In such cases, the shape of the stress-strain curve has to be determined experimentally for all non-radial loading conditions. The plasticity models including two surface models ae surveyed based on a yield surface and a bound surface that represent a state of maximum stress. This paper is concerned with the improvement of a plasticity models of the two-surface type for structural steel. This is follwed by an overview of plasticity models on structural steel. Finally the need for further research is identified.

Bree's interaction diagram of beams with considering creep and ductile damage

  • Nayebi, A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.665-678
    • /
    • 2008
  • The beams components subjected to the loading such as axial, bending and cyclic thermal loads were studied in this research. The used constitutive equations are those of elasto-plasticity coupled to ductile and/or creep damage. The nonlinear kinematic hardening behavior was considered in elastoplasticity modeling. The unified damage law proposed for ductile failure and fatigue by the author of Sermage et al. (2000) and Kachanov's creep damage model applied to cyclic creep and low cycle fatigue of beams. Based on the results of the analysis, the shakedown limit loads were determined through the calculation of the residual strains developed in the beam analysis. The iterative technique determines the shakedown limit load in an iterative manner by performing a series of full coupled elastic-plastic and continuum damage cyclic loading modeling. The maximum load carrying capacity of the beam can withstand, were determined and imposed on the Bree's interaction diagram. Comparison between the shakedown diagrams generated by or without creep and/or ductile damage for the loading patterns was presented.

Measurement of Cyclic Behavior of Advanced High Strength Steel Sheets Based on Pre-straining and Bending (전변형과 굽힘을 이용한 초고강도 철강 판재의 반복 거동 측정)

  • Chae, J.Y.;Jung, J.;Zang, Shun-lai;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.41-47
    • /
    • 2017
  • Cyclic behavior of advanced high strength steel sheets was measured using an inverse-optimization approach with pre-straining and bending. First, tensile specimens were pre-strained, and three-point bending was conducted for the pre-strained specimens. By using the inverse finite element optimization, the combined isotropic-kinematic hardening parameters that minimize the error between the measured and predicted bending force-displacement curves. The measured cyclic behavior agreed well with the cyclic behavior measured by sheet tension-compression test, which confirms the validity of the measuring procedure based on inverse optimization.