• Title/Summary/Keyword: Cyclic carbonate

Search Result 63, Processing Time 0.035 seconds

Synthesis of a Cyclic Carhonate, 4-Ethyl-l,3-dioxolan-2-one (고리 카보네이트 화합물인 4-Ethyl-1,3-dioxolan-2-one의 새로운 합성)

  • Lee Yoon-Bae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.5
    • /
    • pp.480-483
    • /
    • 2004
  • Butylene carbonate(4-ethyl-l,3-dioxolan-2-one), one of the cyclic carbonate was synthesized by the thermal degradation of poly(butylene carbonate). The poly(butylene carbonate) was made from 1,2-Epoxybutane and carbon dioxide which is one of the main green house gas. The prepared cyclic carbonate was identified by GC-Mass. This synthetic method is an alternative way to prepare cyclic carbonates.

  • PDF

Synthesis and Ionic Conductivity of Polystyrene Derivative Containing Cyclic Carbonate (Cyclic carbonate를 포함하는 polystyrene 유도체의 합성 및 이온전도 특성)

  • Kim, Doo-Hwan;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • In this study polystyrene derivative, VBCE, having a cyclic carbonate was synthesized by Williamson reaction and polymerized to poly(VBCE) successfully in an usual polymerization conditions. The obtained polymer was blended with PEGMA and the effect of composition on the ionic conductivity was investigated. Interestingly, the ionic conductivity was decreased from $4.2{\times}10^{-5}S\;cm^{-1}$ to $3.93{\times}10^{-6}S\;cm^{-1}$ with the poly(VBCE) contents of 5.8mol%. From the DSC study, it was found that the $T_g$ of the blend was increased from $-50^{\circ}C$ to $-21^{\circ}C$ by the addition of poly(VBCE). Therefore, it is believed that the presence of a polar cyclic carbonate makes polymer matrix harder and it is necessary to design new structures less hindered the mobility of the matrix.

Cycloaddition and Crosslinking Reactions of CO2 and Glycidyl Methacrylate using Ionic Liquid (이온성 액체를 이용한 CO2와 glycidyl methacrylate의 고리화 첨가 및 고분자 가교 반응)

  • Kim, Dong Hyun;Kang, Tae Won;Lee, Jong Jib;Ko, Young Soo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.342-346
    • /
    • 2013
  • In this study the cycloaddition of glycidyl methacrylate (GMA) and $CO_2$ using ionic liquid as catalyst was performed for the technology of $CO_2$ reduction. The structure of synthesized cyclic carbonate, [2-oxo-1,3-dioxolan-4-yl]methacrylate (DOMA) was analyzed and confirmed by FT-IR and $^1H$-NMR. The change in conversion with respect to reaction time was investigated using $^1H$-NMR. Interestingly, the ionic polymerization of vinyl groups and crosslinking reaction between cyclic carbonate rings of DOMA were observed following completion of cycloaddition.

Suppression of Aluminum Corrosion in Lithium Bis(trifluoromethanesulfonyl)imide-based Electrolytes by the Addition of Fumed Silica

  • Louis, Hamenu;Lee, Young-Gi;Kim, Kwang Man;Cho, Won Il;Ko, Jang Myoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1795-1799
    • /
    • 2013
  • The corrosion property of aluminum by lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is investigated in liquid and gel electrolytes consisting of ethylene carbonate/propylene carbonate/ethylmethyl carbonate/diethyl carbonate (20:5:55:20, vol %) with vinylene carbonate (2 wt %) and fluoroethylene carbonate (5 wt %) using conductivity measurement, cyclic voltammetry, scanning electron microscopy, and energy dispersive X-ray spectroscopy. All corrosion behaviors are attenuated remarkably by using three gel electrolytes containing 3 wt % of hydrophilic and hydrophobic fumed silica. The addition of silica particles contributes to the increase in the ionic conductivity of the electrolyte, indicating temporarily formed physical crosslinking among the silica particles to produce a gel state. Cyclic voltammetry also gives lower anodic current responses at higher potentials for repeating cycles, confirming further corrosion attenuation or electrochemical stability. In addition, the degree of corrosion attenuation can be affected mainly by the electrolytic constituents, not by the hydrophilicity or hydrophobicity of silica particles.

Synthesis Catalytic Application of Several$d^8Transition Metal Diphosphine Complexes, (MCl_2PP) (M = Ni^{2+}, Pd^{2+}, Pt^{2+}, Au^{3+} ; PP = diphosphines)$ (몇가지 $d^8$ 전이금속-디포스핀 착물 ($MCl_2PP$)의 합성과 촉매적 응용 (M = $Ni^{2+}$, $Pd^{2+}$, $Pt^{2+}$, $Au^{3+}$ ; PP = diphosphines))

  • Park Yu-Chul;Kim Kyung-Chae;Cho Young-Jae
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.685-691
    • /
    • 1992
  • The $d^8$-transition metal complexes containing diphosphine, $MCl_2PP$ were prepared by using $K_nMCl_m$ as starting materials, wherein M were Ni(II), Pd(II), Pt(II) and Au(III) and PP were bis(diphenylphosphino)methane(dppm), bis(diphenylphosphino)ethane(dppe), bis(diphenylphosphino)propane (dppp) and bis(diphenylphosphino)ethylene(dppety). The complexes were characterized by the spectral property $(^H-NMR$, $^{31}P-NMR$ and UV-Visible spectra) together with elemental analysis. The complexes were tested for the catalytic activity on the formation reactions of 3(2H)-furanone and cyclic carbonate. The only Ni(II)- and Pd(II)-diphosphine complexes displayed a good catalytic effects in the production of 3(2H)-furanone from 2-methyl-3-butyn-2-ol [reaction (1)]. But all the diphosphine complexes as catalyst were almost inactive towards cyclic carbonate production preaction [reaction (2)].

  • PDF

Recent Development to Generate Carbon Dioxide-based Cyclic Carbonate and Polycarbonate (이산화탄소기반 고리형 카보네이트 및 폴리카보네이트 제조 연구 동향)

  • Kwon, Doo-Yeon;Kim, Jae-Il;Kang, Hwi-Ju;Kim, Da-Yeon;Kim, Jae-Ho;Lee, Bong;Kim, Moon-Suk
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.201-208
    • /
    • 2011
  • The green house gas, carbon dioxide, can be utilized as raw materials to prepare carbon dioxide-based polycarbonates in research and industry. The carbon dioxide-based polycarbonates is one of the emerging low-cost green polymers. Recently, the fast development of carbon dioxide-based polycarbonates has created new chances for industry. In this review, we describe the preparation and characterization of cyclic carbonate monomer using carbon dioxide, oxiranes and oxetanes in the presence of various catalysts and preparation of polycarbonates from cyclic carbonate monomer, presenting an organized and detailed overview of the state of the art.

Theoretical Studies on the Gas-Phase Pyrolysis of Carbonate Esters, Hydroxy-Esters and -Ketones

  • Lee, Ik-Choon;Cha, Ok-Ja;Lee, Bon-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.97-101
    • /
    • 1991
  • Gas-phase pyrolyses of carbonate esters, ${\alpha}$- and ${\beta}$-hydroxy esters and ${\beta}$-hydroxy ketones have been studied theoretically by the AM1 MO method. Carbonate esters were found to decompose by two types of processes; in the reaction pathway involving an intermediate, the decomposition of the intermediate was rate-limiting, but direct pyrolyses were also possible via a six-membered cyclic transition state in which the methoxy oxygen attacks a hydrogen atom on the ${\beta}$-carbon. The hydroxy esters and ketones were found to decompose in a concerted process involving a six-membered cyclic transition state. Successive methylation on the ${\alpha}$- and ${\gamma}$-carbon led to an increase in the reactivity in agreement with experiments.

Cyclic Carbonates via Thermal Degradation of Poly(alkylene carbonate)s (Poly(alkylene carbonate)의 열분해에 의한 고리형 카보네이트의 합성)

  • 이윤배;김원길
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.235-237
    • /
    • 2002
  • 지구상에서 일어나는 많은 환경문제 중 지구의 온난화 현상은 지구의 존폐를 가름할 정도로 중요한 문제이다. 이 온난화현상을 일으키는 주범이 바로 이산화탄이다. 이와 같은 해결책의 일환으로 CO₂를 이용하여 epoxide를 가지고, 여러 가지 고분자를 고압의 조건에서 합성해 보고, 또한 합성된 고분자의 열적분해로 이루어지는 메커니즘을 규명해 보았다.

Synthesis of Cyclic Styrene Carbonate via Pyrolysis of Poly(styrene carbonate) (Poly(styrene carbonate)의 열분해에 의한 고리형 Styrene Carbonate의 합성)

  • Yoo, Jin-Li;Shin, Eun-Jung;Koo, Dae-Chul;Lee, Yoon-Bae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.569-571
    • /
    • 2006
  • 지구의 온난화를 가속시키는 주요물질인 이산화탄소($CO_2$)와 styrene oxide를 Zinc Glutarate를 촉매로 하여 800-1000psi, $750^{\circ}C$에서 반응시켜 합성한 Poly(styrene carbonate)(PSC)를 질소분위기하 $750^{\circ}C$에서 열분해하여 고리형 styrene carbonate를 합성하였다. 생성물은 GC-Mass로 분석하여 확인하였다.

  • PDF

Kinetic Study on Aminolysis of Phenyl 2-Pyridyl Carbonate in Acetonitrile: Effect of Intramolecular H-bonding Interaction on Reactivity and Reaction Mechanism

  • Song, Ji-Hyun;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2081-2085
    • /
    • 2014
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reactions of phenyl 2- pyridyl carbonate (6) with a series of cyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The Br${\o}$nsted-type plot for the reaction of 6 is linear with ${\beta}_{nuc}$ = 0.54, which is typical for reactions reported previously to proceed through a concerted mechanism. Substrate 6 is over $10^3$ times more reactive than 2-pyridyl benzoate (5), although the reactions of 6 and 5 proceed through the same mechanism. A combination of steric hindrance, inductive effect and resonance contribution is responsible for the kinetic results. The reactions of 6 and 5 proceed through a cyclic transition state (TS) in which H-bonding interactions increase the nucleofugality of the leaving group (i.e., 2-pyridiniumoxide). The enhanced nucleofugality forces the reactions of 6 and 5 to proceed through a concerted mechanism. In contrast, the corresponding reaction of 4-nitrophenyl 2-pyridyl carbonate (7) proceeds through a stepwise mechanism with quantitative liberation of 4-nitrophenoxide ion as the leaving group, indicating that replacement of the 4-nitrophenoxy group in 7 by the PhO group in 6 changes the reaction mechanism (i.e., from a stepwise mechanism to a concerted pathway) as well as the leaving group (i.e., from 4-nitrophenoxide to 2-pyridiniumoxide). The strong electron-withdrawing ability of the 4-nitrophenoxy group in 7 inhibits formation of a H-bonded cyclic TS. The presence or absence of a H-bonded cyclic TS governs the reaction mechanism (i.e., a concerted or stepwise mechanism) as well as the leaving group (i.e., 2-pyridiniumoxide or 4-nitrophenoxide).