• Title/Summary/Keyword: Cyclic Dynamic Loading

Search Result 187, Processing Time 0.02 seconds

Flaw Assessment on an Offshore Structure using Engineering Criticality Analysis (ECA 기법을 이용한 해양구조물의 결함 평가)

  • Kang, Beom-Jun;Kim, Yooil;Ryu, Cheol-Ho;Ki, Hyeok-Geun;Park, Sung-Gun;Oh, Yeong-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.435-443
    • /
    • 2015
  • Offshore structure may be considerably vulnerable to fatigue failure while initial flaw propagates under cyclic loading, so crack propagation analysis/fracture/yield assessments about initial flaw detected by NDT are necessarily required. In this paper, case studies have been conducted by flaw assessment program using engineering criticality analysis (ECA) approach. Variables such as flaw geometry, flaw size, structure geometry, dynamic stress, static stress, toughness, crack growth rate, stress concentration factor (SCF) affected by weld are considered as analysis conditions. As a result, the safety of structure was examined during fatigue loading life. Also, critical initial flaw size was calculated by sensitivity module in the developed program. The flaw assessments analysis using ECA approach can be very useful in offshore industries owing to the increasing demand on the engineering criticality analysis of potential initial flaws.

Test method for Young's Modulus of Parallel Graded Coarse Granular Materials by Large Triaxial Test (대형삼축압축시험을 이용한 상사입도 조정 재료의 탄성계수 산정시험)

  • Lee, Sung Jin;Choo, Yun Wook;Hwang, Su Beom;Kim, Ki Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.211-220
    • /
    • 2012
  • Coarse granular materials such as gravel, rubble is used as major fill materials in earth structures of railway, road and dam. Therefore, it is essential to accurately evaluate properties of these materials for reasonable design and construction. In the precedent study, we built large triaxial testing system and verified system compliance with a focus on the dynamic properties. And we could secured the reliability of the system. In this study, the cyclic triaxial tests were performed in various experimental conditions on coarse granular material. Two series of parallel graded samples are prepared by mixing crushed rock. The influence of grain size, loading pattern, loading frequency, and fine contents were analyzed and discussed.

Prediction Approach with a Stiffness Measure in Nonlinear Dynamic Analysis of Reinforced Concrete Structures (철근 콘크리트 구조물의 비선형 동적 해석을 위한 성치 측정에 의한 예측 접근법)

  • 김교신;전경훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • Current seismic design philosophy for reinforced concrete (RC) structures on energy dissipation through large inelastic defomations. A nonlinear dynamic analysis which is used to represent this behavior is time consuming and expensive, particularly if the computations have to be repeated many times. Therefore, the selection of an efficient yet accurate alogorithm becomes important. The main objective of the present study is to propose a new technique herein called the prediction approach with siffness measure (PASM) method in the convetional direct integration methods, the triangular decomposition of matrix is required for solving equations of motion in every time step or every iteration. The PASM method uses a limited number of predetermined decomposed effective matrices obtained from stiffness states of the structure when it is deformed into the nonlinear range by statically applied cyclic loading. The method to be developed herein will reduce the overall numerical effort when compared to approaches which recompute the stiffness in each time step or iteration.

  • PDF

Displacement Ductility Evaluation of Earthquake Experienced RC Bridge Piers with 2.5 Aspect Ratio (지진을 경험한 형상비 2.5 RC 교각의 내진 변위 연성도 평가)

  • 정영수;박창규;이은희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.79-88
    • /
    • 2003
  • For the construction of PC bridge piers the implementation of 1992 seismic provisions, longitudinal steels were practically lap-spliced in the plastic hinge region. Experimental investigation was conducted ductility of evaluate the seismic earthquake-experienced reinforced concrete columns with 2,5 aspect ratio. Six test specimens were mode with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under a constant axial load, P=0.1f$\_$ck/A$\_$g/. Residual seismic performance of damaged columns was evaluated and compared to that of the corresponding original columns. Test results show that PC bridge piers with lap-spliced longitudinal steels appeared to fail at low ductility. This was due to the debonding of the lap splice, which resulted from insufficient development of the longitudinal steels. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region indicated significant improvement both in flexural strength and displacement ductility.

Shear Strength Characteristics of Unconsolidated-Undrained Reinforced Decomposed Granite Soil under Monotonic and Cyclic Loading (정.동적 하중에 의한 비압밀비배수 보강화강풍화토의 전단강도 특성)

  • Cho, Yong-Sung;Koo, Ho-Bon;Park, Inn-Joon;Kim, You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.13-21
    • /
    • 2006
  • When enforced earth is used for the retain wall and four walls, the most important thing would be how to maximize the land utilization. Accordingly, in case of enforced earth, we pile up the minimal height of earth ($20{\sim}50\;cm$) and harden the earth using a static dynamic hardening machine. In this paper, we tried to analyze and compare the stress transformation characteristics of reinforced weathered granite soil with geosynthetics when repetitive load is added to the enforced earth structure and when static load is added. The result is that the cohesion component of the strength increased greatly and the friction component decreased slightly.

Seismic damage assessment of a large concrete gravity dam

  • Lounis Guechari;Abdelghani Seghir;Ouassila Kada;Abdelhamid Becheur
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.125-134
    • /
    • 2023
  • In the present work, a new global damage index is proposed for the seismic performance and failure analysis of concrete gravity dams. Unlike the existing indices of concrete structures, this index doesn't need scaling with an ultimate or an upper value. For this purpose, the Beni-Haroun dam in north-eastern Algeria, is considered as a case study, for which an average seismic capacity curve is first evaluated by performing several incremental dynamic analyses. The seismic performance point of the dam is then determined using the N2 method, considering multiple modes and taking into account the stiffness degradation. The seismic demand is obtained from the design spectrum of the Algerian seismic regulations. A series of recorded and artificial accelerograms are used as dynamic loads to evaluate the nonlinear responses of the dam. The nonlinear behaviour of the concrete mass is modelled by using continuum damage mechanics, where material damage is represented by a scalar field damage variable. This modelling, which is suitable for cyclic loading, uses only a single damage parameter to describe the stiffness degradation of the concrete. The hydrodynamic and the sediment pressures are included in the analyses. The obtained results show that the proposed damage index faithfully describes the successive brittle failures of the dam which increase with increasing applied ground accelerations. It is found that minor damage can occur for ground accelerations less than 0.3 g, and complete failure can be caused by accelerations greater than 0.45 g.

A Study on Liquefaction Assessment of Moderate Earthquake Region concerning Earthquake Magnitude of Korea (국내 지진규모를 고려한 중진 지역에서의 액상화 평가방법에 관한 연구)

  • Kim, Soo-Il;Park, Keun-Bo;Park, Seong-Yong;Seo, Kyung-Bum
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.125-134
    • /
    • 2006
  • Conventional methods for the assessment of liquefaction potential were primary for severe earthquake regions $(M{\geq}7.5)$ such as North America and Japan. In Korea, an earthquake related research has started in 1997, but most contents in the guidelines were still quoted from literature reviews of North America and Japan, which are located in strong earthquake region. Those are not proper in a moderate earthquake regions including Korea. Also the equivalent uniform stress concept (Seed & Idriss, 1971) using regular sinusoidal loading which is used, in a conventional method for the assessment of liquefaction potential, can't reflect correctly the dynamic characteristics of real irregular earthquake motions. In this study, cyclic triaxial tests using irregular earthquake motions are performed with different earthquake magnitudes, relative densities, and fines contents. Assessment of liquefaction potential in moderate earthquake regions is discussed based on various laboratory test results. From the results, screening limits in seismic design were re-investigated and proposed using normalized maximum stress ratios under real irregular earthquake motions. Also from the tests using constant wedge loading and incremental wedge loading, the characteristics of liquefaction resistance of saturated sand under irregular ground motions are investigated.

Experimental Study on the Behavior Characteristics of Single Steel Pile in Sand Subjected to Lateral Loadings (사질토 지반에서 수평하중에 따른 단일강관말뚝의 거동특성에 관한 실험적 연구)

  • Kim, Daehyeon;Lee, Tae-Gwang;Kim, Sun-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3548-3556
    • /
    • 2015
  • In order to fulfill the needs of reliable and economically feasible foundation, engineers should consider not only the working load that can endure extreme conditions but also apprehending precise behavior of continuous dynamic load while designing the foundation of offshore wind power generators. To actualize the foundation, a model pile was made in miniature. Also, calibration chamber was made and a 500mm height of sand-bed was made to perform "static lateral load experiment" and "repetitive loading experiment", total of two Lateral load tests. As a result, in Static Lateral load test, the bigger length/diameter of model pile led an increase in load displacement. However, when performing "Cyclic Lateral load test", the increase in number of under loading led the decrease in horizontal displacement from each repeated lateral load. While performing Static Lateral load test and repeated loading experiment, we could observe the decreasing in the rate of ultimate lateral load capacity increase of the pile. Also, it turned out that the higher relative density of the ground, the lower ultimate lateral load capacity by repeated horizontal loading.

Effect of Cyclic Soil Model on Seismic Site Response Analysis (지반 동적거동모델에 따른 부지응답해석 영향연구)

  • Lee, Jinsun;Noh, Gyeongdo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.23-35
    • /
    • 2015
  • Nonlinear soil behavior before failure under dynamic loading is often implemented in a numerical analysis code by a mathematical fitting function model with Masing's rule. However, the model may show different behavior with an experimental results obtained from laboratory test in damping ratio corresponding secant shear modulus for a certain shear strain rage. The difference may come from an unique soil characteristics which is unable to implement by using the existing mathematical fitting model. As of now, several fitting models have been suggested to overcome the difference between model and real soil behavior but consequence of the difference in dynamic analysis is not reviewed yet. In this paper, the effect of the difference on site response was examined through nonlinear response history analysis. The analysis was verified and calibrated with well defined dynamic geotechnical centrifuge test. Site response analyses were performed with three mathematical fitting function models and compared with the centrifuge test results in prototype scale. The errors on peak ground acceleration between analysis and experiment getting increased as increasing the intensity of the input motion. In practical point of view, the analysis results of accuracy with the fitting model is not significant in low to mid input motion intensity.

Evaluation of the Numerical Liquefaction Model Behavior with Drainage Condition (배수조건에 따른 액상화 수치모델의 거동평가)

  • Lee, Jin-Sun;Kim, Seong-Nam;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.63-74
    • /
    • 2019
  • Numerical liquefaction model and response history analysis procedure are verified based on dynamic centrifuge test results. The test was a part of the Liquefaction Experiments Analysis Project (LEAP). The model ground was formed inside of rigid box by using the submerged Ottawa F65 sand with a relative density of 55% and 5° of surface inclination. A tapered sinusoidal wave with a frequency of 1 Hz was applied to the base of the model box. Numerical analyses were performed by two dimensional finite difference method in prototype scale. The soil is modeled to show hysteretic behavior before shear failure, and Mohr-Coulomb model is applied for shear failure criterion. Byrne's liquefaction model was applied to track the changes in pore pressure due to cyclic loading after static equilibrium. In order to find an appropriate flow condition for the liquefaction analysis, numerical analyses were performed both in drained and undrained condition. The numerical analyses performed under the undrained condition showed good agreement with the centrifuge test results.