• Title/Summary/Keyword: Cyclic Bending Moment

Search Result 82, Processing Time 0.024 seconds

Biomechanical Testing of Anterior Cervical Spine Implants: Evaluation of Changes in Strength Characteristics and Metal Fatigue Resulting from Minimal Bending and Cyclic Loading

  • Kim, Sung-Bum;Bak, Koang-Hum;Cheong, Jin-Hwan;Kim, Jae-Min;Kim, Choong-Hyun;Oh, Seong-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.3
    • /
    • pp.217-222
    • /
    • 2005
  • Objective: To achieve optimal fit of implant, it is necessary to bend the implant during spine surgery. Bending procedure may decrease stiffness of plate especially made of titanium and stainless steel. Typically titanium suffers adverse effects including early crack propagation when it is bent. We investigate whether 6 degree bending of titanium plates would decrease the stiffness after full cyclic loading by comparing with non-bending titanium plates group. Methods: Authors experimented 40 titanium alloy plates of 57mm in length, manufactured by 5 different companies. Total 40 plates were divided into two groups (20 bent plates for experimental group and 20 non-bent plates for control group). Twenty plates of experimental group were bent to 6 degree with 3-point bending technique and verified with image analyzer. Using the electron microscope, we sought for a initial crack before and after 3-point bending. Mechanical testing by means of 6000 cyclic axial-compression loading of 35N in compression with moment arm of 35mm-1.1 Nm was conducted on each plate and followed by the electron microscopic examination to detect crack or fissure on plates. Results: The stiffness was decreased after 6000 cyclic loading, but there was no statistically significant difference in stiffness between experimental and control group. There was no evidence of change in grain structure on the electron microscopic magnification. Conclusion: The titanium cervical plates can be bent to 6 degree without any crack or weakness of plate. We also assume that minimal bending may increase the resistance to fatigue fracture in cervical flexion-extension movement.

Analysis on Short Crack Growth Rate after Single Overload under Cyclic Bending Moment

  • Song, Sam-Hong;Lee, Kyeong-Ro;Kim, Amkee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.19-26
    • /
    • 2001
  • In order to investigate the effect of single tensile overload on the short crack growth behavior under the out-of-plane cyclic bending moment, crack opening stresses were continuously measured by an elastic compliance method using strain gages. The characteristics of short crack growth after the single tensile overload are analyzed by the effective stress range ratio. Futhermore, the investigation was carried out with respect to various fatigue crack growth behaviors such as the plastic zone size effect on crack retardation, the retarded crack length and the number of cycles.

  • PDF

Nonlinear modeling of flat-plate structures using grid beam elements

  • Tian, Ying;Chen, Jianwei;Said, Aly;Zhao, Jian
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.489-505
    • /
    • 2012
  • This paper presents a simplified grid beam model for simulating the nonlinear response of reinforced concrete flat-plate structures. The beam elements are defined with nonlinear behavior for bending moment and torsion. The flexural stiffness and torsional strength of the beam elements are defined based on experimental data to implicitly account for slab two-way bending effects. A failure criterion that considers the interaction between the punching strength and slab flexural behavior is incorporated in the model. The effects of bond-slip of slab reinforcement on connection stiffness are examined. The proposed grid beam model is validated by simulating large-scale tests of slab-column connections subjected to concentric gravity loading and unbalanced moment. This study also determines the critical parameters for a hysteretic model used to simulate flat-plates subjected to cyclic lateral loading.

Variation of Notch Shape on the Delamination Zone Behavior in Al/AFRP Laminates (노치형태 변화에 따른 Al/AFRP 적층재의 층간분리거동)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.278-285
    • /
    • 2001
  • Aluminum/Aramid Fiber Reinforced Plastic(Al/AFRP) laminates are applied to the fuselage-wing intersection. The main objective of this study was to evaluate the delamination zone behavior of Al/AFRP with a saw-cut and circular hole using average stress criterion and the effect of notch geometry. Mechanical tests were carried out to determine the cyclic-bending moment and delamination zone observed ultrasonic C-scan pictures. In case of Al/AFRP containing saw-cut specimen, the shape and size of the delamination zone formed along the fatigue crack. However, in case of Al/AFRP containing circular hole specimen, the shape and size of delamination zone formed two types. first type, delamination zone formed along the fatigue crack. Second type, not observed fatigue crack. Therefore, delamination zone was formed dependently of the circular hole shape.

  • PDF

Exposed Reinforced Concrete-Filled Steel Tubular (RCFST) column-base joint with high-strength

  • Mou, Ben;Wang, Zian;Qiao, Qiyun;Zhou, Wanqiu
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • The weld quality has always been an important factor affecting the development of exposed CFT column-base joint. In this paper, a new type of exposed RCFST column-base joint is proposed, in which the high strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens, the varying axial force ratio (0, 0.25 and 0.5), were tested under cyclic loadings. In addition, the bending moment capacity, energy dissipation capacity and deformation capacity of column-base joints were clarified. The experimental results indicated that the axial force ratio increases the stiffness and the bending moment and improves the energy dissipation capacity of column-base joints. This is because a large axial force can limit the slip between steel tubular and infilled concrete effectively. The specimens show stable hysteresis behavior.

Cyclic Loading Test and an Analytical Evaluation of the Modular System with Bracket-typed Fully Restrained Moment Connections (브래킷형 완전강접합 모듈러 시스템의 반복가력실험과 해석적 평가)

  • Park, Jae-Seong;Kang, Chang-Hoon;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.19-28
    • /
    • 2018
  • Key factors that ensure competitiveness of modular unit include consistent high quality and connection condition that ensures high structural performance while minimizing the overall scale of the on-site process. However, it is difficult to evaluate the structural performance of the connection of modular unit, and its structural analysis and design method can be different depending on the connection to its development, which affects the seismic performance of its final design. In particular, securing the seismic performance is the key to designing modular systems of mid-to-high-rise structure. In this paper, therefore, the seismic performance of the modular system with bracket-typed fully restrained moment connections according to stiffness and the shapes of various connection members was evaluated through experimental and analytical methods. To verify the seismic performance, a cyclic loading test of the connection joint of the proposed modular system was conducted. As a result of this study, theoretical values and experimental results were compared with the initial stiffness, hysteresis behavior and maximum bending moment of the modular system. Also, the connection joint was modeled, using the commercial program ANSYS, which was then followed by finite element analysis of the system. According to the results of the experiment, the maximum resisting force of the proposed connection exceeded the theoretical parameters, which indicated that a rigid joint structural performance could be secured. These results almost satisfied the criteria for connection bending strength of special moment frame listed on KBC2016.

Hysteresis Behavior of Semirigid CFT Column-to-Beam Connections with a Double Web-Angle (더블 웨브앵글 반강접 CFT 기둥-보 접합부의 이력거동)

  • Lee, Sung Ju;Kim, Joo Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.15-24
    • /
    • 2013
  • This paper presents the results from a systematic finite element study on the bending moment resisting capacity of double web-angle connection for a CFT(concrete filled tube) composite frame subjected to cyclic loading. The three-dimensional nonlinear finite element models are constructed to investigate the rotational stiffness, bending moment capacity, and failure modes of the partially restrained composite CFT connections. A wide scope of additional structural behaviors explain the different influences of the double web-angle connections parameters, such as the different thickness of connection angles and the gage distances of high strength steel connection bar. The moment-rotation angle relationships obtained statically from the finite element analysis are compared with those from Richard's theoretical equation.

Monotonic and Hysteresis Behavior of Semirigid CFT Column-to-Beam Connections with a Top-Seat Angle (상·하부 ㄱ형강 반강접 CFT 기둥-보 접합부의 단조 및 이력거동)

  • Lee, Sung Ju;Kim, Joo Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.191-204
    • /
    • 2014
  • In this paper a systematic numerical analysis is performed to obtain the bending moment resisting capacity of a top and seat angle connection, which is a type of partially restrained connection, for a CFT composite frame subjected to cyclic loading. This partially restrained composite CFT connections are fabricated using high strength steel connection bar. The three-dimensional nonlinear finite element models are constructed to investigate the rotational stiffness, bending moment capacity, and failure modes. A wide scope of additional structural behaviors explain the different influences of the top and seat angle connection's parameters, such as the different thickness of connection angles and the gage distances of the high strength steel bar. The moment-rotation angle relationships obtained from the finite element analysis are compared with those from Richard's theoretical equation.

Cyclic performance and design recommendations of a novel weak-axis reduced beam section connection

  • Lu, Linfeng;Xu, Yinglu;Liu, Jie;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.337-353
    • /
    • 2018
  • In previous weak-axis moment connection tests, brittle fracture always initiated near the edge of the beam flange groove weld due to force flow towards the stiffer column flanges, which is the opposite pattern as strong-axis moment connections. As part of the China NSFC (51278061) study, this paper tested two full-scale novel weak-axis reduced beam section moment connections, including one exterior frame connection specimen SJ-1 under beam end monotonic loading and one interior frame joint specimen SJ-2 under column top cyclic loading. Test results showed that these two specimens were able to satisfy the demands of FEMA-267 (1995) or ANSI/AISC 341-10 (2010) without experiencing brittle fracture. A parametric analysis using the finite element software ABAQUS was carried out to better understand the cyclic performance of the novel weak-axis reduced beam section moment connections, and the influence of the distance between skin plate and reduced beam section, a, the length of the reduced beam section, b, and the cutting depth of the reduced beam section, c, on the cyclic performance was analyzed. It was found that increasing three parametric values reasonably is beneficial to forming beam plastic hinges, and increasing the parameter a is conducive to reducing stress concentration of beam flange groove welds while increasing the parameters b and c can only reduce the peak stress of beam flange groove welds. The rules recommended by FEMA350 (2000) are suitable for designing the proposed weak-axis RBS moment connection, and a proven calculation formulation is given to determine the thickness of skin plate, the key components in the proposed weak-axis connections. Based on the experimental and numerical results, a design procedure for the proposed weak-axis RBS moment connections was developed.

Comparison of mechanical properties of nickel-titanium rotary files: Aurum Blue vs. Aurum Pro (니켈티타늄 전동 파일의 기계적 특성 비교: Aurum Blue vs. Aurum Pro)

  • Kwak, Sang Won;Ha, Jung-Hong;Ahn, Sang Mi;Kim, Hyeon-Cheol
    • The Journal of the Korean dental association
    • /
    • v.57 no.11
    • /
    • pp.672-678
    • /
    • 2019
  • AIM: The purpose of this study was to evaluate and compare the torsional fracture resistances, cyclic fatigue resistance, and bending stiffness of two nickel-titanium (NiTi) rotary instruments made of different heat-treated alloy: Aurum Blue (heat-treated) and Aurum Pro (conventional). Methods: Forty-five Aurum Blue and Aurum Pro NiTi files were selected for the three mechanical tests (n=15). For the torsional resistance test, 3 mm file tip was fixed and the shaft was driven clockwise at 2 rpm until fracture occurred by using a customized device. Cyclic fatigue resistance was evaluated by rotating instruments in artificial canal with dynamic mode. Bending stiffness was tested by observation of the bending moment on attaining a 45° bend. The results were analyzed by student-t tests at a significance level of 95%. The fractured surface of each groups were examined under a scanning electron microscope (SEM). Results: Aurum Blue showed significantly higher toughness, ultimate strength, distortion angle, and number of cycles to failure than those of Aurum Pro (p < 0.05). However, Aurum Blue and Aurum Pro did not differ significantly in terms of bending stiffness. SEM showed typical topographic appearances of the cyclic fatigue and torsional fracture. Conclusions: Under the limitations of this study, heat-treated instruments showed higher flexibility and fracture resistances than conventional NiTi instruments.

  • PDF