• Title/Summary/Keyword: Cyclic Behavior

Search Result 1,562, Processing Time 0.027 seconds

A Study on Static and Fatigue Behavior of Restrained Concrete Decks without Rebar by Steel Strap (Steel Strap으로 횡구속된 무철근 바닥판의 정적 및 피로거동 특성 연구)

  • Jo, Byung Wan;Kim, Cheol Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.137-147
    • /
    • 2012
  • In the steel-free bridge concrete deck, steel straps are generally used instead of conventional steel rebar while laterally restrained in the perpendicular direction to the traffic in order fir the arching effect of concrete deck. In this paper, the minimum amount of FRP bar is to be suggested based on the structural strength, crack propagation, stress level and others in order to control cracks. As a result of laboratory tests, the structural strength of deck with 0.15 percentage of steel strap showed improved structural strength including ductility. The long-term serviceability of steel strap deck with FRP bar proved to satisfy the requirements and to be structurally stable while showing the amount of crack and residual vertical displacement within the allowable limits after two million cyclic loadings. The structural failure of RC bridge deck is generally caused from the punching shear rather than moment. Therefore, the ultimate load at failure could be estimated using the shear strength formula in the two-way slab based on ACI and AASHTO criteria. However the design criteria tend to underestimate the shear strength since they don't consider the arching effects and nonlinear fracture in bridge deck with lateral confinement. In this paper, an equation to estimate the punching shear strength of steel strap deck is to be developed considering the actual failure geometries and effect of lateral confinement by strap while the results are verified in accordance with laboratory tests.

The Strain of Transverse Steel and Concrete Shear Resistance Degradation after Yielding of Reinforced Concrete Circular Pier (철근콘크리트 원형 교각의 횡방향철근 변형률과 항복이후 콘크리트 전단저항 저감)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.147-157
    • /
    • 2018
  • The basis of capacity design has been explicitly or implicitly regulated in most bridge design specifications. It is to guarantee ductile failure of entire bridge system by preventing brittle failure of pier members and any other structural members until the columns provides fully enough plastic rotation capacity. Brittle shear is regarded as a mode of failure that should be avoided in reinforced concrete bridge pier design. To provide ductility behavior of column, the one of important factors is that flexural hinge of column must be detailed to ensure adequate and dependable shear strength and deformation capacity. Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with 4.5 aspect ratio. The test variables are longitudinal steel ratio, transverse steel ratio, and axial load ratio. Eight flexurally dominated columns were tested. In all specimens, initial flexural-shear cracks occurred at 1.5% drift ratio. The multiple flexural-shear crack width and length gradually increased until the final stage. The angles of the major inclined cracks measured from the vertical column axis ranged between 42 and 48 degrees. In particular, this study focused on assessing transverse reinforcement contribution to the column shear strength. Transverse reinforcement contribution measured during test. Each three components of transverse reinforcement contribution, axial force contribution and concrete contribution were investigated and compared. It was assessed that the concrete stresses of all specimen were larger than stress limit of Korea Bridge Design Specifications.

Seismic Performance and Flexural Over-strength of Hollow Circular RC Column with Longitudinal Steel Ratio 2.017% (축방향철근비 2.017%인 중공 원형 RC 기둥의 내진성능과 휨 초과강도)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Three small scale hollow circular reinforced concrete columns with aspect ratio 4.5 were tested under cyclic lateral load with constant axial load. Diameter of section is 400 mm, hollow diameter is 200 mm. The selected test variable is transverse steel ratio. Volumetric ratios of spirals of all the columns are 0.302~0.604% in the plastic hinge region. It corresponds to 45.9~91.8% of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by seismic concept. The longitudinal steel ratio is 2.017%. The axial load ratio is 7%. This paper describes mainly crack behavior, load-displacement hysteresis loop, seismic performance such as equivalent damping ratio, residual displacement and effective stiffness and flexural over-strength of circular reinforced concrete bridge columns with respect to test variable. The regulation of flexural over-strength is adopted by Korea Bridge Design Specifications (Limited state design, 2012). The test results are compared with nominal strength, result of nonlinear moment-curvature analysis and the design specifications such as AASHTO LRFD and Korea Bridge Design Specifications(Limited state design).

Effect of Vapor-Cooled Heat Stations in a Cryogenic Vessel (극저온액체 저장용기에서 열전도 차폐단의 영향)

  • Kim, S.Y.;Kang, B.H.;Choi, H.J.
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.4
    • /
    • pp.169-176
    • /
    • 1998
  • An experimental study on effect of vapor-cooled heat stations in a 5.5 liter cryogenic vessel has been performed. The cryogenic vessel is made of stainless steel of thickness of 1mm and insulated by the combined insulation of vacuum, MLI(multi-layer insulation) and vapor-cooled radiation shield. Vapor-cooled heat stations are also constructed based on the 1-dimensional thermal analysis to reduce the heat inleak through a filling tube. Thermal analysis indicates that the vapor-cooled heat stations can substantially enhance the performance of vessel for cryogenic fluids with high $C_p/h_{fg}$ where $C_p$ the specific heat and $h_{fg}$ the heat of vaporization, such as $LH_2$ and LHe. The experimental results for $LN_2$ shows that the total heat inleak into inner vessel consists of 14% radiation and 86% conduction through the filling tube. Therefore, it is expected that the conduction heat in leak of the vessel for high $C_p/h_{fg}$ cryogenic fluids can be significantly reduced. powders. The amount of copper coating was 20wt%. In order to examine corrosion behavior of the electrodes, the corrosion current and the current density, in 6M KOH aqueous solution after removal of oxygen in the solution, were measured by potentiodynamic and cyclic voltamo methods. The results showed that Co in the alloy increased corrosion resistance of the electrode whereas Ni decreased the stability of the electrode during the charge-discharge cycles. The electrode used Si sealant as a binder showed a lower corrosion current density than the electrode used PTFE and the electrode used Cu-coated alloy powders showed the best corrosion resistance.

  • PDF

Electrochemical Behavior of Oxovanadium (IV) Complex of Benzohydroxamic Acid (옥소바나듐 (IV) 과 벤조히드로옥사믹산 간에 형성되는 착물의 전기화학적 성질에 관한 연구)

  • Hi Sik Choo;Duk Soo Park;Yoon Bo Shim;Sung Nak Choi
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.281-286
    • /
    • 1989
  • The redox properties of benzophydroxamic acid (Hben) and its oxovanadium complex, $VO(Ben)_2$ has been studied by the use of polarograpy and cyclic voltammetry. The radical anions of Hben seem to be generated in acetone. The wave at -0.05V vs. Ag/AgCl electrode might be attributed to the formation of radical anion and the wave at -1.78V vs. Ag/AgCl electrode might be attributed the formation of radical dianion. The $VO(Ben)_2$ exhibits one oxidation wave at + 0.55V and two reduction waves at -0.15V and -1.30V vs. Ag/AgCl electrode; the oxidation is reversible one electron process $(VO(ben)_2 {\rightleftharpoons} VO(ben)^+ + e)$. The reduction wave at -0.15V is quasireversible and is arised from the formation of radical anion,$VO(Ben)_2^-$. The second reduction wave at -1.30V is irreversible and this reduction process produces vanadium(III). This oxygen containing ligand of Hben seems to reduce the stability of + 4 oxidation state of vanadium while the sulfur or nitrogen donor of the ligands stabilize the + 4 oxidation state of vanadium when comparisons are made among several oxovanadium complexes.

  • PDF

Effect of Nb, V and Cr on the High Temperature Oxidation of Ti-(42, 44)% Al Alloys (Ti-(42, 44)%Al 합금의 고온내산화성에 미치는 Nb, V 및 Cr의 영향)

  • Lee, Yeong-Chan;Kim, Mi-Hyeon;Kim, Seong-Hun;Lee, Won-Uk;Baek, Jong-Hyeon;Lee, Dong-Bok
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.1025-1031
    • /
    • 1999
  • Alloys of TiAl with six different compositions. i. e., Ti-(42, 44)Al-2Nb-4V. Ti-(42, 44)Al-4Nb-2V and Ti -(42, 44)Al-4Nb-2Cr, were manufactured by arc-melting. and their oxidation behavior was studied. Both isothermal and cyclic oxidation tests were performed at 700, 800 and $900^{\circ}C$ in air for 50hr. The oxidation resistance increased in the order of Ti-(42, 44)Al-2Nb-4V, Ti-(42, 44)Al-4Nb-ZV and Ti-(42, 44)Al-4Nb-2Cr. It was found that V was a deleterious element, while Cr was a beneficial element in terms of oxidation resistance. During oxidation, a simultaneous interdiffusion was observed. All the constituent elements in the base alloys diffused outward. whereas oxygen from the atmosphere diffused inward, to form triple oxide layers composed of an outermost $\textrm{TiO}_2$ layer. upper ($\textrm{TiO}_2+\textrm{Al}_2\textrm{O}_3$) mixed layer, and lower $\textrm{TiO}_2$-rich layer.

  • PDF

Sedimentological and Hydromechanical Characteristics of Bed Deposits for the Cultivation of Manila clam, Ruditapes philippinarum in Gomso Tidal Flat (곰소만 조간대 바지락 양식장 저질의 퇴적학적 및 수리역학적 특성)

  • CHO Tae-Chin;LEE Sang-Bae;KIM Suck-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.245-253
    • /
    • 2001
  • To investigate the effects of hydromechanical and textural characteristics of sediment deposits on the cultivation of Manila clam, Ruditapes philippinarum surface and sub-surface core sediments were collected seasonally in Gomso tidal flat. Grain size distribution were analyzed to investigate the annual variation of sediment texture. In winter unimodal distribution of grain size with the peak at $5\phi$ is dominant However, during the summer sediment texture become a little bit coarser and grain size distribution shows the peaks at $4\~5 \phi$. Optimum sediment texture for the cultivation of manila clam, R. philippinarum was found to be sandy silt in which mean Brain size was between 4 and $5 \phi$ with the sand content less than $50\%$ and clay content of $5\~10\%$. Mechanical and hydrological characteristics of sediment deposits were also studied in the laboratory and the results were applied to the numerical simulation for the behavior of surface sediment subjected to the cyclic loading from sea-water level change. Results of numerical simulation illustrate that the permeability of sediment had to be maintained in the range of $10^{-11}\sim10^{-12}m^2$ to ensure the proper sedimentological environment for the cultivation of manila clam, R. philippinarum. The deposits of virtually impermeable mud layer, with the threshold thickness of 4 cm, would be very hazardous to clam habitat.

  • PDF

Experimental Curvature Analysis of Reinforced Concrete Piers with Lap-Spliced Longitudinal Steels subjected to Seismic Loading (지진하중을 받는 주철근 겹침이음된 철근콘크리트 교각의 곡률분석)

  • Chung, Young-Soo;Park, Chang-Kyu;Song, Hee-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.41-49
    • /
    • 2006
  • Through the 1982 Urahawa-ohi and the 1995 Kobe earthquakes, a number of bridge columns were observed to develop a flexural-shear failure due to the bond slip as a consequence of premature termination of the column longitudinal reinforcement. Because the seismic behavior of RC bridge piers is largely dependent on the performance of the plastic hinge legion of RC bridge piers, it is desirable that the seismic capacity of RC bridge pier is to evaluate as a curvature ductility. The provision for the lap splice of longitudinal steel was not specified in KHBDS(Korea Highway Bridge Design Specification) before the implementation of 1992 seismic design code, but the lap splice of not more than 50%, longitudinal reinforcement was newly allowed in the 2005 version of the KHBDS. The objective of this research is to investigate the distribution and ductility of the curvature of RC bridge column with the lap splice of longitudinal reinforcement in the plastic hinge legion. Six (6) specimens were made in 600 mm diameter with an aspect ratio of 2.5 or 3.5. These piers were cyclically subjected to the quasi-static loads with the uniform axial load of $P=0.1f_{ck}A_g$. According to the slip failure of longitudinal steels of the lap spliced specimen by cyclic loads, the curvatures of the lower and upper parts of the lap spliced region were bigger and smaller than the corresponding paris of the specimen without a lap splice, respectively. Therefore, the damage of the lap spliced test column was concentrated almost on the lower part of the lap spliced region, that appeared io be failed in flexure.

Research on the Non-linear Analysis of Reinforced Concrete Walls Considering Different Macroscopic Models (거시적 모델을 다르게 고려한 철근콘크리트 벽체의 비선형 해석 연구)

  • Shin, Ji-Uk;Kim, Jun-Hee;You, Young-Chan;Choi, Ki-Sun;Kim, Ho-Ryong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.1-11
    • /
    • 2012
  • In this paper, non-linear analysis was performed for Reinforced Concrete (RC) walls using different macroscopic models subjected to cyclic loading, and the analytical results were compared with previous experimental studies of RC walls. ASCE41-06 (American Society of Civil Engineers) specifies that the hysteresis behaviors of RC walls are different due to the aspect ratio of the walls. For a comparison between analytical and experimental results, a slender wall with an aspect ratio exceeding 3.0 and a squat wall with an aspect ratio of 1.0 were selected among previous research works. For the non-linear analysis, each test specimen was modeled using two different macroscopic methods: the first representing the flexural behavior of the RC wall, and the second considering the diagonal shear in the web of the wall. Through nonlinear analysis of the considered RC walls, the analytical difference of a slender wall was negligible due to the different macroscopic modeling methods. However, the squat wall was significantly affected by the considered components of the modeling method. For an accurate performance evaluation of the RC building with squat walls, it would be reasonable to use a macroscopic model considering diagonal shear.

Electrochemical Studies on the Lanthanides (란탄족 원소의 전기화학적 환원에 관한 연구 (제 1 보))

  • Park, Jong Min;Gang, Sam U;Do, Lee Mi;Han, Yang Su;Son, Byeong Chan
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.561-568
    • /
    • 1990
  • Voltammetric behavior of some light lanthanide ions (La$^{3+}$, Pr$^{3+}$, Nd$^{3+}$, Sm$^{3+}$, and Eu$^{3+}$) in various supporting electrolytes has been investigated by several electrochemical techniques. The peak potentials and the peak currents, their dependency on the concentration, temperature and pH effects, the reversibility of the electrode reactions are described. The reduction of La$^{3+}$, Pr$^{3+}$ and Nd$^{3+}$ in 0.1 M lithium chloride proceeds by a three-electron change directly to the metallic state (Ln$^{3+}$ + 3e- → Ln$^0$) and charge transfer is totally irreversible. However, the reduction of Sm$^{3+}$ in 0.1 M tetramethylammonium iodide and Eu$^{3+}$ in 0.1 M lithium chloride proceeds in two stages (Ln$^{3+}$ + e- → Ln$^{2+}$ and Ln$^{2+}$ + 2e- → Ln$^0$). At pH values lower than ca.4 the hydrated lanthanide species (Ln(OH)$^{2+}$) reduced before the lanthanide ions (Ln$^{3+}$) due to the catalytic effect of hydrogen ions, and peak current increase with in the order Eu$^{3+}$ < Sm$^{3+}$ < Nd$^{3+}$ < Pr$^{3+}$ < La$^{3+}$ in differential pulse polarography. Some representative plots of $i_{pc}V^{-1/2} (proportional to current function) vs. V show considerable influence of hydrogen ion/lanthanide ion concentration in cyclic voltammetry. It is shown that a reaction of lanthanide ions with proton and/or water and catalytic reaction is enhanced at lower pH and at decreased lanthanide ion concentration.

  • PDF