• 제목/요약/키워드: Cycle Voltammetry

검색결과 111건 처리시간 0.031초

Synthesis and Characterization of Silver Vanadium Oxide as a Cathode for Lithium Ion Batteries

  • Nguyen, Van Hiep;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권3호
    • /
    • pp.139-142
    • /
    • 2016
  • β-AgVO3 nanorods have been successfully synthesized using a soft chemistry route followed by heat treatment. They were characterized by X-ray diffraction and field emission scanning electron microscopy, and their electrochemical properties were investigated using cyclic voltammetry, impedance spectra, and charge-discharge tests. The results showed that the smooth-surfaced nanorods are very uniform and well dispersed, with diameters of ~100-200 nm and lengths of the order of several macrometers. The nanorods deliver a maximum specific discharge capacity of 275 mAh g-1 at 30 mA g-1. They also demonstrated good rate capability with a discharge capacity at the 100th cycle of 51 mAh g-1.

Study on urea precursor effect on the electroactivities of nitrogen-doped graphene nanosheets electrodes for lithium cells

  • Kim, Ki-Yong;Jung, Yongju;Kim, Seok
    • Carbon letters
    • /
    • 제19권
    • /
    • pp.40-46
    • /
    • 2016
  • Nitrogen-atom doped graphene oxide was considered to prevent the dissolution of polysulfide and to guarantee the enhanced redox reaction of sulfur for good cycle performance of lithium sulfur cells. In this study, we used urea as a nitrogen source due to its low cost and easy preparation. To find the optimum urea content, we tested three different ratios of urea to graphene oxide. The morphology of the composites was examined by field emission scanning electron microscope. Functional groups and bonding characterization were measured by X-ray photoelectron spectroscopy. Electrochemical properties were characterized by cyclic voltammetry in an organic electrolyte solution. Compared with thermally reduced graphene/sulfur (S) composite, nitrogen-doped graphene/S composites showed higher electroactivity and more stable capacity retention.

On the electropolymerization of acrylonitrile as effected by cyclic voltammetry and chronoamperometry method

  • Seo, H.J.;Cho, M.S.;Nam, J.D.;Lee, Y.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.335-335
    • /
    • 2006
  • Polyacrylonitrile (PAN) was deposited as an adherent film on Cu-substrate by the cathodic electropolymerization. This work is an attempt to compare the molecular weight and the fractured surface of PAN prepared by CV and chronoamperometry. The molecular weight and increase weight of PAN measured the according to AN-concentration, scan rate, and cycle number (or time) using CV and chronoamperometry. The morphology of PAN was characterized by SEM image. Mechanism and optimal conditions for electropolymerization of acrylonitrile on Cu-substrate were investigated and discussed.

  • PDF

New Iron-Containing Electrode Materials for Lithium Secondary Batteries

  • Hong, Young-Sik;Ryu, Kwang-Sun;Chang, Soon-Ho
    • ETRI Journal
    • /
    • 제25권5호
    • /
    • pp.412-417
    • /
    • 2003
  • Using a galvanostatic charge/discharge cycler and cyclic voltammetry, we investigated for the first time the electrochemical properties of iron-containing minerals, such as chalcophanite, diadochite, schwertmannite, laihuite, and tinticite, as electrode materials for lithium secondary batteries. Lithium insertion into the mineral diadochite showed a first discharge capacity of about 126 mAh/g at an average voltage of 3.0 V vs. $Li/Li^+$, accompanied by a reversible capacity of 110 mAh/g at the 60th cycle. When the cutoff potential was down to 1.25 V, the iron was further reduced, giving rise to a new plateau at 1.3 V. Although the others showed discharge plateaus at low potentials of less than 1.6 V, these results give an important clue for the development of new electrode materials.

  • PDF

Effects of Aluminum and Silicon as Additive Materials for the Zinc Anode in Zn-Air Batteries

  • Lee, Yong-Seok;Ryu, Kwang-Sun
    • 전기화학회지
    • /
    • 제21권1호
    • /
    • pp.12-20
    • /
    • 2018
  • To solve low cycle efficiency of the zinc anode in Zn-air batteries by corrosion, this study examined the effects of Al as a cathodic protection additive to Zn. The Al-mixed Zn anodes were produced by mixing Zn and Al powder (1, 2, and 3 wt. %). To compare the effects of the Al additive, Si was selected under the same conditions. The morphology and elemental composition of the additives in the Zn were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and inductively coupled plasma - mass spectrometry. The anti-corrosion effects of the Al and Si-mixed Zn anodes were examined by linear polarization. Cyclic voltammetry and charge-discharge tests were conducted to evaluate the electrochemical performance of the Al and Si-mixed Zn anodes. As a result, the Al-mixed Zn anodes showed highest corrosion resistance and cycling performance. Among these, the 2 wt.% Al-mixed Zn anodes exhibited best electrochemical performance.

Supercapacitive Properties of Composite Electrode Consisting of Activated Carbon and Di(1-aminopyrene)quinone

  • Kim, Kwang Man;Lee, Young-Gi;Park, Jeong Ho;Ko, Jang Myoun
    • ETRI Journal
    • /
    • 제38권2호
    • /
    • pp.252-259
    • /
    • 2016
  • Di(1-aminopyrene)quinone (DAQ) as a quinone-containing conducting additive is synthesized from a solution reaction of 1-aminopyrene and hydroquinone. To utilize the conductive property of DAQ and its compatibility with activated carbon, a composite electrode for a supercapacitor is also prepared by blending activated carbon and DAQ (3:1 w/w), and its supercapacitive properties are characterized based on the cyclic voltammetry and galvanostatic charge/discharge. As a result, the composite electrode adopting DAQ exhibits superior electrochemical properties, such as a higher specific capacitance of up to $160F{\cdot}g^{-1}$ at $100mV{\cdot}s^{-1}$, an excellent high-rate capability of up to $1,000mV{\cdot}s^{-1}$, and a higher cycling stability with a capacitance retention ratio of 82% for the 1,000th cycle.

리튬이온전지용 부극재료인 페트롤리엄 및 콜타르 피치 카본의 전지반응 특성에 관한 연구 (Study on the Characteristics of Cell Reactions for Petroleum- and Coal Tar Pitch-based Carbons as a Negative Electrode for Li-iion Batteries)

  • 박영태;유광수;김정식
    • 한국세라믹학회지
    • /
    • 제37권2호
    • /
    • pp.128-133
    • /
    • 2000
  • In this work, soft carbons produced by pyrolysis of petroleum and coal-tar pitch were used as the negative electrode for Li-ion batteries. We studeid the charge/discharge capacity and the interfacial reaction of these electrodes by constructing a half cell. Charge/discharge property was studied by a constant-current step and the interfacial reaction between the electrolyte and the surface of a carbon electrode was studied by the cyclic voltammetry. The initial charge/discharge capacity for the coal-tar pitch carbon increased exceedingly with the heat treatment temperature. On hte other hand, the capacity of the petroleum pitch carbon increased with temperature up to 1000$^{\circ}C$, thereafter decreased continuously. While the charge capacity decreased with the cycle number, the reversibility increased above 90%. In addition, the thermal stability and crystallization of petroleum and coal-tar pitches were analyzed by TGA and XRD, respectively.

  • PDF

수열 합성법을 이용한 구형 탄소의 제조 및 특성 평가 (Fabrication of Carbon Spheres by hydrothermal synthesis and evaluation of characteristics)

  • Lee, Eun-Jung;Park, Soo-Gil;KIM, Han-Ju;Kim, Hong-il
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.165-166
    • /
    • 2014
  • The electric double-layer capacitors (EDLCs) are consisted of electrodes, electrolyte and separator. Among of them, electrode materials are generally used carbon materials. In this study, we experimented for the purpose of fabrication of carbon spheres from various carbohydrates as electrode material. Carbon spheres were prepared by hydrothermal synthesis process. Carbon spheres' morphology had been examined using scanning electron microscopy (SEM) and specific surface area had been examined using BET analysis. To confirm the possibilities of carbon spheres as EDLC's electrode materials, we conducted electrochemical tests such as cyclic voltammetry (CV), impedance and cycle ability.

  • PDF

A Novel Sulphur Cathode Materials for Rechargeable Lithium Batteries

  • Jin, Bo;Park, Kyung-Hee;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권4호
    • /
    • pp.157-160
    • /
    • 2007
  • Lithium-sulphur batteries were fabricated in a dry room, and their electrochemical properties were analyzed by scanning electron microscopy (SEM), cyclic voltammetry (CV), and charge-discharge tests. SEM results showed that sulphur and nanocarbon powders were mixed homogeneously, and sulphur powders were enwrapped by a large amount of carbon powders. The charge-discharge test results demonstrated that the lithium-sulphur battery displayed excellent reversibility and cycling performance, which supplied a discharge capacity of $788.1mAh\;g^{-1}$ at the first cycle and $796.4mAh\;g^{-1}$ after 71 cycles at room temperature, respectively.

리튬 이온 폴리머 전지용 Tin oxide-flyash Composite 전극의 전기화학적 특성 (Electrochemical Properties of Tin oxide-flyash Composite for Lithium Ion Polymer Battery)

  • 김종욱;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 센서 박막재료 반도체 세라믹
    • /
    • pp.88-90
    • /
    • 2003
  • The purpose of this study is to research and develop tin oxide-flash composite for lithium Ion polymer battery. Tin oxide is one of the promising material as a electrode active material for lithium Ion polymer battery (LIPB). Tin-based oxides have theoretical volumetric and gravimetric capacities that are four and two times that of carbon, respectively. We investigated cyclic voltammetry and charge/discharge cycling of SnO-flyash/SPE/Li cells. The first discharge capacity of SnO-flyash composite anode was 720 mAh/g. The discharge capacity of SnO-flyash composite anode 412 and 314 mAh/g at cycle 2 and 10 at room temperature, respectively. The SnO-flyash composite anode with PVDF-PMMA-PC-EC-$LiClO_4$ electrolyte showed good capacity with cycling.

  • PDF