• 제목/요약/키워드: Cycle Deformation

검색결과 280건 처리시간 0.025초

고온/정체/산화제 과잉 환경에서 STS 계열의 산화 거동 (Oxidation Behavior of STS Series at High -Temperature/Stagnation/Oxidizer-Rich Environment)

  • 신동해;이성민;이희준;고영성;김선진;소윤석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.843-848
    • /
    • 2017
  • 고온/고압/산화제 과잉 환경에 노출되는 금속들은 급격한 산화(발화 및 연소)가 일어날 수 있다. 본 연구에서는 시편에 전력을 공급하여 시편 온도를 직접 제어하는 방식의 직류전원장치 시험설비를 구축하고 고온/정체/산화제 과잉 환경을 모사하여 STS 계열 금속 재질에 대한 금속 산화 및 발화에 대한 평가를 진행하였다. 그 결과, 선정된 재질의 변형(변색), 표면 거칠기에 변화와 금속 표면의 박리 현상이 관찰되었으며 무게 및 시편 두께에 변화가 있음을 확인하였다. 시편 중 가장 산화가 심한 시편은 STS 304이며 산화가 덜한 시편은 XM-19로 나타났다.

  • PDF

Thermal distortion analysis method for TMCP steel structures using shell element

  • Ha, Yun-sok;Rajesh, S.R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제1권2호
    • /
    • pp.95-100
    • /
    • 2009
  • As ships become larger, thicker and higher tensile steel plate are used in shipyard. Though special chemical compositions are required for high-tensile steels, recently they are made by the TMCP (Thermo-Mechanical control process) methodology. The increased Yield / Tensile strength of TMCP steels compared to the normalized steel of same composition are induced by suppressing the formation of Ferrite and Pearlite in favor of strong and tough Bainite while being transformed from Austenite. But this Bainite phase could be vanished by another additional thermal cycle like welding and heating. As thermal deformations are deeply related by yield stress of material, the study for prediction of plate deformation by heating should niflect the principle of TMCP steels. The present study is related to the development of an algorithm which could calculate inherent strain. In this algorithm, not only the mechanical principles of thermal deformations, but also the initial portion of Bainite is considered when calculating inherent strain. Distortion analysis results by these values showed good agreements with experimental results for normalized steels and TMCP steels during welding and heating. This algorithm has also been used to create an inherent strain database of steels in Class rule.

연료전지 자동차용 TMS 히터 개발 (Development of Thermal Management System Heater for Fuel Cell Vehicles)

  • 한수동;김성균;김치명;박용선;안병기
    • 한국수소및신에너지학회논문집
    • /
    • 제23권5호
    • /
    • pp.484-492
    • /
    • 2012
  • The TMS(Thermal Management System) heater in a fuel cell vehicle has been developed to prevent a decline of fuel cell durability and cold start durability. Main functions of the COD(Cathode Oxygen Depletion) heater are depletion of oxygen in a cathode as heat energy and consumption of electric power for rapid warming up of a fuel cell stack. This paper covers subjects including the design specification of a heater, heater controller for detection of overheat and reliability assessment including coolant pressure cycle test of a heater. To verify the design concept, burst pressure and deformation analysis of plastic housing were carried out. Also, temperature distribution analysis of heater surface and coolant inside of housing were carried out to verify the design concept. By designing the plastic housing instead of a steel housing, the 30% weight lightening and 50% cost reduction were attained. A module-based design of a TMS system including a heater or reducing the watt density of a heater is a problem to be solved in the near future work.

전통민속마을의 주거변형실태에 관한 연구 - 낙안민속마을을 중심으로 - (A Study on the Deformation of Folk Village)

  • 박익수
    • 한국농촌건축학회논문집
    • /
    • 제6권3호
    • /
    • pp.63-74
    • /
    • 2004
  • This study is focusing on the Nagan Folk Village, primarily because of its historical and cultural values. The purpose of this study, accordingly, analysis the fact of the dwelling change through spot-survey and case-investigation, and is to find a way to improve for the rational preservation of the traditional dwelling analyzing on the actual condition and the reason for such changes in the Nakan Folk Village. The dwelling change is stemmed from the physical factors, and some modifications of internal composition, exterior formation, building equipment. As a result, The changes of internal composition are included in the reduction of garnering room, the enlargement of bed/service room, the establishment of mechanical room. The changes of exterior formation with structural material are included in the glass door for the internalization of 'TOEMARU', the extra glass door for the brightening of room, the cement plastering for the endurance of wall. The changes of building equipment are included in the establishment of oil-boiler, wash closet, sink for convenient life All houses should be graded on their qualitative value, managed in a cycle. And its own criterion for acceptable deformations should be established.

  • PDF

Mechanical analysis of the bow deformation of a row of fuel assemblies in a PWR core

  • Wanninger, Andreas;Seidl, Marcus;Macian-Juan, Rafael
    • Nuclear Engineering and Technology
    • /
    • 제50권2호
    • /
    • pp.297-305
    • /
    • 2018
  • Fuel assembly (FA) bow in pressurized water reactor (PWR) cores is considered to be a complex process with a large number of influencing mechanisms and several unknowns. Uncertainty and sensitivity analyses are a common way to assess the predictability of such complex phenomena. To perform such analyses, a structural model of a row of 15 FAs in the reactor core is implemented with the finite-element code ANSYS Mechanical APDL. The distribution of lateral hydraulic forces within the core row is estimated based on a two-dimensional Computational Fluid Dynamics model with porous media, assuming symmetric or asymmetric core inlet and outlet flow profiles. The influence of the creep rate on the bow amplitude is tested based on different creep models for guide tubes and fuel rods. Different FA initial states are considered: fresh FAs or FAs with higher burnup, which may be initially straight or exhibit an initial bow from previous cycles. The simulation results over one reactor cycle demonstrate that changes in the creep rate and the hydraulic conditions may have a considerable impact on the bow amplitudes and the bow patterns. A good knowledge of the specific creep behavior and the hydraulic conditions is therefore crucial for making reliable predictions.

탄탈륨 판재의 어닐링 집합조직과 결정립 크기 (Annealing Textures and Grain Size of Tantalum Sheet)

  • 강전연;박성원;박준영;박성준;송이화;박성택;김광련;오경원
    • 소성∙가공
    • /
    • 제28권5호
    • /
    • pp.247-256
    • /
    • 2019
  • In this study, the development of annealing textures in cold rolled and annealed tantalum sheets was analyzed using electron backscatter diffraction. At $900^{\circ}C$, the textures of the recrystallized grains in the partially and completely recrystallized microstructures displayed significant similarities. The average diameter of the recrystallized grains with ${\gamma}-fiber$ orientations exceeded that of grains with different orientations, and the average growth rates were unrelated to the orientations after an initial stage of recrystallization. Additional cold rolling and annealing was done for controlled initial microstructures and textures inherited from various processes of prior cold rolling and annealing. This second cycle of the process resulted in stronger textures with major ${\gamma}-fiber$ orientations as a result of the enhanced ${\gamma}-fiber$ orientations in the preceding textures. A coarse-grained prior microstructure resulted in a weaker annealing texture than a fine grained one regardless of the stronger previous texture, which was occasioned by the sub-structures of the minor orientations at local deformation inhomogeneities such as sharp in-grain shear bands.

열가소성 직물탄소복합소재 사출 성형품의 표면 함침 개선에 관한 연구 (A study on the improvement of impregnation on the surface of injection-molded thermoplastic woven carbon fabric composite)

  • 정의철;윤경환;이성희
    • Design & Manufacturing
    • /
    • 제15권3호
    • /
    • pp.39-44
    • /
    • 2021
  • In molding of continuous fiber-reinforced thermoplastic composites, it is very difficult to impregnate between the reinforcements and the matrix since the matrix has a high melting temperature and high viscosity. Therefore, most of composite molding processes are divided in the manufacturing processes of intermediate materials called prepreg and the forming of products from intermediate materials. The divided process requires additional facilities and thermoforming, and they increase the cycle time and cost of composite products. These problems can be resolved by combining the continuous fiber-reinforced composite molding process with injection molding. However, when a composite material is manufactured by inserting woven fabric into the injection mold, poor impregnation occurs on the surface of the molded product. It affects the properties of the composites. In this paper, through an impregnation experiment using cores with different heat transfer rates and pore densities, the reason for the poor impregnation was confirmed, and molding experiments were conducted to produce composite with improved surface impregnation by inserting the mesh. And also, the surface impregnation and deformation of composites molded using different types of mesh were compared with each other.

An Approach to the Localization of Technology for a Transport and Storage Container for Very Low-Level Radioactive Liquid Waste

  • Shin, Seung Hun;Choi, Woo Nyun;Yoon, Seungbin;Lee, Un Jang;Park, Hye Min;Kim, Hee Reyoung
    • 방사성폐기물학회지
    • /
    • 제20권1호
    • /
    • pp.127-131
    • /
    • 2022
  • The structural safety of prototype transport and storage containers for very low-level radioactive liquid waste was experimentally estimated for its localization development. Transport containers for radioactive liquid waste have been researched and developed, however, there are no standardized commercial containers for very low-level radioactive waste in Korea. In this study, the structural safety of the designated IP-2 type container capable of transporting and temporarily storing large amounts of very low-level liquid waste, which is generated during the operation and decommissioning of nuclear power plants, was demonstrated. The stacking and drop tests, which were conducted to determine the structural integrity of the container, verified that there was no external leakage of the contents in spite of its structural deformation due to the drop impact. This study shows the effort required for the localization of the technology used in manufacturing transport and storage containers for very low-level radioactive liquid waste, and the additional structural reinforcement of the container in which the commercial intermediate bulk container (IBC) external frame was coupled.

Evaluation of high plasticity clay stabilization methods for resisting the environmental changes

  • Taleb, Talal;Unsever, Yesim S.
    • Geomechanics and Engineering
    • /
    • 제30권5호
    • /
    • pp.461-469
    • /
    • 2022
  • One of the most important factors that should be considered for using any ground improvement technique is the stability of stabilized soil and the durability of the provided solution for getting the required engineering properties. Generally, most of the earth structures that are constructed on clayey soils are exposing movements due to the long periods of drying or wetting cycles. Over time, environmental changes may result in swells or settlements for these structures. In order to mitigate this problem, this research has been performed on mixtures of high plasticity clay with traditional additives such as lime, cement and non-traditional additives such as polypropylene fiber. The purpose of the research is to assess the most appropriate ground improvement technique by using commercially available additives for resisting the developed desiccation cracks during the drying process and resisting the volume changes that may result during wet/dry cycles as an attempt to simulate the changes of environmental conditions. The results show that the fiber-reinforced samples have the lowest volumetric deformation in comparision with cement and lime stabilized samples, and the optimum fiber content is identified as 0.38%. In addition, the desiccation cracks were not visible on the samples' surface for both unreinforced and chemically stabilized samples. Regarding cracks resistance resulting from the desiccation process, it is observed, that the resistance is connected with the fiber content and increases with the increase of the fiber inclusion, and the optimum content is between 1% and 1.5%.

Studies on seismic performance of the new section steel beam-wall connection joint

  • Weicheng Su;Jian Liu;Changjiang Liu;Chiyu Luo;Weihua Ye;Yaojun Deng
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.501-519
    • /
    • 2023
  • This paper introduces a new hybrid structural connection joint that combines shear walls with section steel beams, fundamentally resolving the construction complexity issue of requiring pre-embedded connectors in the connection between shear walls and steel beams. Initially, a quasi-static loading scheme with load-deformation dual control was employed to conduct low-cycle repeated loading experiments on five new connection joints. Data was acquired using displacement and strain gauges to compare the energy dissipation coefficients of each specimen. The destruction process of the new connection joints was meticulously observed and recorded, delineating it into three stages. Hysteresis curves and skeleton curves of the joint specimens were plotted based on experimental results, summarizing the energy dissipation performance of the joints. It's noteworthy that the addition of shear walls led to an approximate 17% increase in the energy dissipation coefficient. The energy dissipation coefficients of dog-bone-shaped connection joints with shear walls and cover plates reached 2.043 and 2.059, respectively, exhibiting the most comprehensive hysteresis curves. Additionally, the impact of laminated steel plates covering composite concrete floors on the stiffness of semi-rigid joint ends under excessive stretching should not be disregarded. A comparison with finite element analysis results yielded an error of merely 2.2%, offering substantial evidence for the wide-ranging application prospects of this innovative joint in seismic performance.