• Title/Summary/Keyword: Cybersecurity Risks

Search Result 22, Processing Time 0.023 seconds

Mobile Devices Technologies: Risks and Security

  • Alsaqour, Raed;Alharthi, Sultan;Aldehaimi, Khalid;Abdelhaq, Maha
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.249-254
    • /
    • 2021
  • Our society is depending on mobile devices that play a major role in our lives. Utilizing these devices is possible due to their speed power and efficiency in performing basic as well as sophisticated operations that can be found in traditional computers like desktop workstations. The challenge with using mobile devices is that organizations are concerned with the interference between personal and corporate use due to Bring Your Own Device (BYOD) trend. This paper highlights the importance of mobile devices in our daily tasks and the associated risks involved with using these devices. Several technologies and countermeasures are reviewed in this paper to secure the mobile devices from different attempts of attacks. It is important to mention that this paper focuses on technical measures rather than considering different aspects of security measures as recommended by the cybersecurity community.

Quantitative Risk Assessment on a Decentralized Cryptocurrency Wallet with a Bayesian Network (베이즈 네트워크를 이용한 탈중앙화 암호화폐 지갑의 정량적 위험성 평가)

  • Yoo, Byeongcheol;Kim, Seungjoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.637-659
    • /
    • 2021
  • Since the creation of the first Bitcoin blockchain in 2009, the number of cryptocurrency users has steadily increased. However, the number of hacking attacks targeting assets stored in these users' cryptocurrency wallets is also increasing. Therefore, we evaluate the security of the wallets currently on the market to ensure that they are safe. We first conduct threat modeling to identify threats to cryptocurrency wallets and identify the security requirements. Second, based on the derived security requirements, we utilize attack trees and Bayesian network analysis to quantitatively measure the risks inherent in each wallet and compare them. According to the results, the average total risk in software wallets is 1.22 times greater than that in hardware wallets. In the comparison of different hardware wallets, we found that the total risk inherent to the Trezor One wallet, which has a general-purpose MCU, is 1.11 times greater than that of the Ledger Nano S wallet, which has a secure element. However, use of a secure element in a cryptocurrency wallet has been shown to be less effective at reducing risks.

Integrated Ship Cybersecurity Management as a Part of Maritime Safety and Security System

  • Melnyk, Oleksiy;Onyshchenko, Svitlana;Pavlova, Nataliia;Kravchenko, Oleksandra;Borovyk, Svitlana
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.135-140
    • /
    • 2022
  • Scientific and technological progress is also fundamental to the evolving merchant shipping industry, both in terms of the size and speed of modern ships and in the level of their technical capabilities. While the freight performance of ships is growing, the number of crew on board is steadily decreasing, as more work processes are being automated through the implementation of information technologies, including ship management systems. Although there have been repeated appeals from international maritime organizations to focus on building effective maritime security defenses against cyber attacks, the problems have remained unresolved. Owners of shipping companies do not disclose information about cyberattack attempts or incidents against them due to fear of commercial losses or consequences, such as loss of image, customer and insurance claims, and investigations by independent international organizations and government agencies. Issues of cybersecurity of control systems in the world today have gained importance, due to the fact that existing threats concern not only the security of technical means and devices, but also issues of environmental safety and safety of life at sea. The article examines the implementation of cyber risk management in the shipping industry, providing recommendations for the safe ship operation and its systems in order to improve vulnerability to external threats related to cyberattacks, and to ensure the safety and security of such a technical object as a seagoing ship.

Guideline on Security Measures and Implementation of Power System Utilizing AI Technology (인공지능을 적용한 전력 시스템을 위한 보안 가이드라인)

  • Choi, Inji;Jang, Minhae;Choi, Moonsuk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.399-404
    • /
    • 2020
  • There are many attempts to apply AI technology to diagnose facilities or improve the work efficiency of the power industry. The emergence of new machine learning technologies, such as deep learning, is accelerating the digital transformation of the power sector. The problem is that traditional power systems face security risks when adopting state-of-the-art AI systems. This adoption has convergence characteristics and reveals new cybersecurity threats and vulnerabilities to the power system. This paper deals with the security measures and implementations of the power system using machine learning. Through building a commercial facility operations forecasting system using machine learning technology utilizing power big data, this paper identifies and addresses security vulnerabilities that must compensated to protect customer information and power system safety. Furthermore, it provides security guidelines by generalizing security measures to be considered when applying AI.

Quantitative Approach for Calculating DRDoS Risk

  • Young-Ryul Choi;Nam-Kyun Baik
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.3
    • /
    • pp.192-197
    • /
    • 2023
  • A Distributed reflection denial of service (DRDoS) is a variant of DDoS attacks that threatens the availability of services to legitimate users. In response to this evolving threat landscape, the cybersecurity industry and service providers have intensified their efforts to develop effective countermeasures. Despite these efforts, attackers continue to innovate, developing new strategies and tools while becoming more sophisticated. Consequently, DRDoS attacks continue to be harmful. Therefore, ongoing research and development is essential to improve defense against DRDoS attacks. To advance our understanding and analysis of DRDoS attacks, this study examines the unique characteristics of DRDoS attacks and quantifies the risks involved. Additionally, it adopts a quantitative rather than traditional qualitative methods to derive and apply risk, particularly the probability of loss that can be caused by DRDoS attacks.

A Study on Proving RMF A&A in Real World for Weapon System Development (무기체계 개발을 위한 RMF A&A의 실증에 관한 연구)

  • Cho, Kwangsoo;Kim, Seungjoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.817-839
    • /
    • 2021
  • To manage software safely, the military acquires and manages products in accordance with the RMF A&A. RMF A&A is standard for acquiring IT products used in the military. And it covers the requirements, acquisition through evaluation and maintenance of products. According to the RMF A&A, product development activities should reflect the risks of the military. In other words, developers have mitigated the risks through security by design and supply chain security. And they submit evidence proving that they have properly comply with RMF A&A's security requirements, and the military will evaluate the evidence to determine whether to acquire IT product. Previously, case study of RMF A&A have been already conducted. But it is difficult to apply in real-world, because it only address part of RMF A&A and detailed information is confidential. In this paper, we propose the evidence fulfilling method that can satisfy the requirements of the RMF A&A. Furthermore, we apply the proposed method to real-world drone system for verifying our method meets the RMF A&A.

Reducing Cybersecurity Risks in Cloud Computing Using A Distributed Key Mechanism

  • Altowaijri, Saleh M.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.1-10
    • /
    • 2021
  • The Internet of things (IoT) is the main advancement in data processing and communication technologies. In IoT, intelligent devices play an exciting role in wireless communication. Although, sensor nodes are low-cost devices for communication and data gathering. However, sensor nodes are more vulnerable to different security threats because these nodes have continuous access to the internet. Therefore, the multiparty security credential-based key generation mechanism provides effective security against several attacks. The key generation-based methods are implemented at sensor nodes, edge nodes, and also at server nodes for secure communication. The main challenging issue in a collaborative key generation scheme is the extensive multiplication. When the number of parties increased the multiplications are more complex. Thus, the computational cost of batch key and multiparty key-based schemes is high. This paper presents a Secure Multipart Key Distribution scheme (SMKD) that provides secure communication among the nodes by generating a multiparty secure key for communication. In this paper, we provide node authentication and session key generation mechanism among mobile nodes, head nodes, and trusted servers. We analyzed the achievements of the SMKD scheme against SPPDA, PPDAS, and PFDA schemes. Thus, the simulation environment is established by employing an NS 2. Simulation results prove that the performance of SMKD is better in terms of communication cost, computational cost, and energy consumption.

Evolving the Cybersecurity of Clinical Photography in Plastic Surgery

  • Daisy L. Spoer;Alexandra Junn;John D. Bovill;Zoe K. Haffner;Andrew I. Abadeer;Stephen B. Baker
    • Archives of Plastic Surgery
    • /
    • v.50 no.4
    • /
    • pp.443-444
    • /
    • 2023
  • Point-of-care photography and photo sharing optimize patient outcomes and facilitate remote consultation imperative for resident surgeons. This literature review and external pilot survey study highlight the risks associated with current practices concerning patient privacy and biometric security. In a survey of 30 plastic surgeon residents and attendings, we found that the majority took photos of patients with their iPhones and shared them with colleagues via Apple iMessage. These findings corroborate previous reports and highlight a lack of physician user acceptance of secure photo-sharing platforms. Finally, we frame a successful example from the literature in the context of a postulated framework for institutional change. Prioritizing the privacy and safety of patients requires a strategic approach that preserves the ease and frequency of use of current practices.

Trustworthy AI Framework for Malware Response (악성코드 대응을 위한 신뢰할 수 있는 AI 프레임워크)

  • Shin, Kyounga;Lee, Yunho;Bae, ByeongJu;Lee, Soohang;Hong, Heeju;Choi, Youngjin;Lee, Sangjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.1019-1034
    • /
    • 2022
  • Malware attacks become more prevalent in the hyper-connected society of the 4th industrial revolution. To respond to such malware, automation of malware detection using artificial intelligence technology is attracting attention as a new alternative. However, using artificial intelligence without collateral for its reliability poses greater risks and side effects. The EU and the United States are seeking ways to secure the reliability of artificial intelligence, and the government announced a reliable strategy for realizing artificial intelligence in 2021. The government's AI reliability has five attributes: Safety, Explainability, Transparency, Robustness and Fairness. We develop four elements of safety, explainable, transparent, and fairness, excluding robustness in the malware detection model. In particular, we demonstrated stable generalization performance, which is model accuracy, through the verification of external agencies, and developed focusing on explainability including transparency. The artificial intelligence model, of which learning is determined by changing data, requires life cycle management. As a result, demand for the MLops framework is increasing, which integrates data, model development, and service operations. EXE-executable malware and documented malware response services become data collector as well as service operation at the same time, and connect with data pipelines which obtain information for labeling and purification through external APIs. We have facilitated other security service associations or infrastructure scaling using cloud SaaS and standard APIs.

A Study on Cybersecurity Risk Assessment in Maritime Sector (해상분야 사이버보안 위험도 분석)

  • Yoo, Yun-Ja;Park, Han-Seon;Park, Hye-Ri;Park, Sang-Won
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.134-136
    • /
    • 2019
  • The International Maritime Organization (IMO) issued 2017 Guidelines on maritime cyber risk management. In accordance with IMO's maritime cyber risk management guidelines, each flag State is required to comply with the Safety Management System (SMS) of the International Safety Management Code (ISM) that the cyber risks should be integrated and managed before the first annual audit following January 1, 2021. In this paper, to identify cyber security management targets and risk factors in the maritime sector and to conduct vulnerability analysis, we catagorized the cyber security sector in management, technical and physical sector in maritime sector based on the industry guidelines and international standards proposed by IMO. In addition, the Risk Matrix was used to conduct a qualitative risk assessment according to risk factors by cyber security sector.

  • PDF