• Title/Summary/Keyword: Cyber intelligence

Search Result 247, Processing Time 0.025 seconds

Cloud-Based Accounting Adoption in Jordanian Financial Sector

  • ELDALABEEH, Abdel Rahman;AL-SHBAIL, Mohannad Obeid;ALMUIET, Mohammad Zayed;BANY BAKER, Mohammad;E'LEIMAT, Dheifallah
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.833-849
    • /
    • 2021
  • Cloud accounting represents a new area of accounting information systems. Past research has often focused on accounting information systems and its antecedents, rather than factors that adopt cloud accounting system. The purpose of this paper is to explain the factors that influence the adoption of cloud accounting in the financial sectors. This paper applied the technology acceptance model (TAM), technology-organization-environment, and the De Lone and Mc Lean model, coupled with proposed factors relevant to cloud accounting. The proposed model was empirically evaluated using survey data from 187 managers (financial managers, IT department managers, audit managers, heads of accounting departments, and head of internal control departments) in Jordanian bank branches. Based on the SEM results, top management support, organizational competency, service quality, system quality, perceived usefulness, and perceived ease of use had a positive relationship with the intention of using cloud accounting. Cloud accounting adoption positively affected cloud accounting usage. This paper contributes to a theoretical understanding of factors that activate the adoption of cloud accounting. For financial firms in general the results enable them to better develop cloud accounting framework. The paper verifies the factors that affect the adoption of cloud accounting and the proposed cloud accounting model.

5G Cyber Physical System-based Smart City Service Policy (5G CPS 기반 스마트시티 서비스 정책)

  • Kim, Byung-Woon
    • Informatization Policy
    • /
    • v.27 no.4
    • /
    • pp.67-84
    • /
    • 2020
  • This study proposes a smart city service revitalization policy based on communication facility infrastructure in 5G CPS - the core of the 4th industrial revolution, R&D, and related legislations. The 5G CPS is a converged form of ICT technologies, communications facilities, and physical systems. In this study, we propose methods of creating new services for the smart city domain based on communication facilities and the cloud platform in 5G CPS - first, by improving the communication methods classification system based on the facility scale; second, by establishing the national telecommunication facility infrastructure and making long-term investment; third, by reorganizing the Smart City Act aimed at activating new services; and lastly, by expanding the national data analytics R&D and policy support.

A Pre-processing Process Using TadGAN-based Time-series Anomaly Detection (TadGAN 기반 시계열 이상 탐지를 활용한 전처리 프로세스 연구)

  • Lee, Seung Hoon;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.3
    • /
    • pp.459-471
    • /
    • 2022
  • Purpose: The purpose of this study was to increase prediction accuracy for an anomaly interval identified using an artificial intelligence-based time series anomaly detection technique by establishing a pre-processing process. Methods: Significant variables were extracted by applying feature selection techniques, and anomalies were derived using the TadGAN time series anomaly detection algorithm. After applying machine learning and deep learning methodologies using normal section data (excluding anomaly sections), the explanatory power of the anomaly sections was demonstrated through performance comparison. Results: The results of the machine learning methodology, the performance was the best when SHAP and TadGAN were applied, and the results in the deep learning, the performance was excellent when Chi-square Test and TadGAN were applied. Comparing each performance with the papers applied with a Conventional methodology using the same data, it can be seen that the performance of the MLR was significantly improved to 15%, Random Forest to 24%, XGBoost to 30%, Lasso Regression to 73%, LSTM to 17% and GRU to 19%. Conclusion: Based on the proposed process, when detecting unsupervised learning anomalies of data that are not actually labeled in various fields such as cyber security, financial sector, behavior pattern field, SNS. It is expected to prove the accuracy and explanation of the anomaly detection section and improve the performance of the model.

Federated Learning modeling for defense against GPS Spoofing in UAV-based Disaster Monitoring Systems (UAV 기반 재난 재해 감시 시스템에서 GPS 스푸핑 방지를 위한 연합학습 모델링)

  • Kim, DongHee;Doh, InShil;Chae, KiJoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.198-201
    • /
    • 2021
  • 무인 항공기(UAV, Unmanned Aerial Vehicles)는 높은 기동성을 가지며 설치 비용이 저렴하다는 이점이 있어 홍수, 지진 등의 재난 재해 감시 시스템에 이용되고 있다. 재난 재해 감시 시스템에서 UAV는 지상에 위치한 사물인터넷(IoT, Internet of Things) 기기로부터 데이터를 수집하는 임무를 수행하기 위해 계획된 항로를 따라 비행한다. 이때 UAV가 정상 경로로 비행하기 위해서는 실시간으로 GPS 위치 확인이 가능해야 한다. 만일 UAV가 계산한 현재 위치의 GPS 정보가 잘못될 경우 비행경로에 대한 통제권을 상실하여 임무 수행을 완료하지 못하는 결과가 초래될 수 있다는 취약점이 존재한다. 이러한 취약점으로 인해 UAV는 공격자가 악의적으로 거짓 GPS 위치 신호를 전송하는GPS 스푸핑(Spoofing) 공격에 쉽게 노출된다. 본 논문에서는 신뢰할 수 있는 시스템을 구축하기 위해 지상에 위치한 기기가 송신하는 신호의 세기와 GPS 정보를 이용하여 UAV에 GPS 스푸핑 공격 여부를 탐지하고 공격당한 UAV가 경로를 이탈하지 않도록 대응하기 위해 연합학습(Federated Learning)을 이용하는 방안을 제안한다.

Generating A Synthetic Multimodal Dataset for Vision Tasks Involving Hands (손을 다루는 컴퓨터 비전 작업들을 위한 멀티 모달 합성 데이터 생성 방법)

  • Lee, Changhwa;Lee, Seongyeong;Kim, Donguk;Jeong, Chanyang;Baek, Seungryul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.1052-1055
    • /
    • 2020
  • 본 논문에서는 3D 메시 정보, RGB-D 손 자세 및 2D/3D 손/세그먼트 마스크를 포함하여 인간의 손과 관련된 다양한 컴퓨터 비전 작업에 사용할 수 있는 새로운 다중 모달 합성 벤치마크를 제안 하였다. 생성된 데이터셋은 기존의 대규모 데이터셋인 BigHand2.2M 데이터셋과 변형 가능한 3D 손 메시(mesh) MANO 모델을 활용하여 다양한 손 포즈 변형을 다룬다. 첫째, 중복되는 손자세를 줄이기 위해 전략적으로 샘플링하는 방법을 이용하고 3D 메시 모델을 샘플링된 손에 피팅한다. 3D 메시의 모양 및 시점 파라미터를 탐색하여 인간 손 이미지의 자연스러운 가변성을 처리한다. 마지막으로, 다중 모달리티 데이터를 생성한다. 손 관절, 모양 및 관점의 데이터 공간을 기존 벤치마크의 데이터 공간과 비교한다. 이 과정을 통해 제안된 벤치마크가 이전 작업의 차이를 메우고 있음을 보여주고, 또한 네트워크 훈련 과정에서 제안된 데이터를 사용하여 RGB 기반 손 포즈 추정 실험을 하여 생성된 데이터가 양질의 질과 양을 가짐을 보여준다. 제안된 데이터가 RGB 기반 3D 손 포즈 추정 및 시맨틱 손 세그멘테이션과 같은 품질 좋은 큰 데이터셋이 부족하여 방해되었던 작업에 대한 발전을 가속화할 것으로 기대된다.

Optimal Route Generation of Ships using Navigation Chart Information (해도 정보를 이용한 선박의 최적 항로 생성)

  • Min-Kyu Kim;Jong-Hwa Kim;Hyun Yang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.369-370
    • /
    • 2022
  • 최근 자율 운항 선박에 대한 관심이 높아지고 있다. 특히, MUNIN (Maritime Unmanned Navigation through Intelligence in Networks) 프로젝트를 계기로 자율 운항 선박에 대한 개발과 연구가 활발히 진행되고 있다. 또한 국제해사기구 IMO는 자율 운항 선박 시대에 대응하기 위해 자율 선박을 MASS (Maritime Autonomous Surface Ship)라 정의하고 선박 자율화 정도에 따라 4단계 등급을 제시하고 있다. 완전한 자율 운항 선박에 대한 요구조건을 만족하기 위해서는 항로 결정과 제어기술이 필수적이다. 본 연구에서는 여러 가지 기술 중 선박의 최적경로를 생성하는 기법을 다룬다. 기존에 최적항로를 생성하기 위한 방법으로는 A*, Dijkstra와 같은 알고리즘들이 주로 사용되었다. 그러나 이와 같은 알고리즘은 섬이나 육지에 대한 충돌 회피는 고려하고 있지만 수심 및 연안 선박에 대한 규정들은 고려하지 않고 있어 실제로 적용하기에는 한계점이 있다. 따라서 본 연구에서는 안전을 위해 선박의 선저 여유 수심과, 해도에 규정되어 있는 선박 운항에 대한 여러 규정들을 반영하여 최적 항로를 생성하고자 한다. 최적 항로를 생성하기 위한 알고리즘으로는 강화학습 기반의 Q-learning 알고리즘을 적용하였다.

  • PDF

Study on Emerging Security Threats and National Response

  • Il Soo Bae;Hee Tae Jeong
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.34-41
    • /
    • 2023
  • The purpose of this paper is to consider the expansion of non-traditional security threats and the national-level response to the emergence of emerging security threats in ultra-uncertain VUCA situations. As a major research method for better analysis, the theoretical approach was referred to papers published in books and academic journals, and technical and current affairs data were studied through the Internet and literature research. The instability and uncertainty of the international order and security environment in the 21st century brought about a change in the security paradigm. Human security emerged as the protection target of security was expanded to individual humans, and emerging security was emerging as the security area expanded. Emerging security threatsthat have different characteristicsfrom traditionalsecurity threats are expressed in various ways, such as cyber threats, new infectious disease threats, terrorist threats, and abnormal climate threats. First, the policy and strategic response to respond to emerging security threats is integrated national crisis management based on artificial intelligence applying the concept of Foresight. Second, it is to establish network-based national crisis management smart governance. Third, it is to maintain the agile resilience of the concept of Agilience. Fourth, an integrated response system that integrates national power elements and national defense elements should be established.

An Effective Anomaly Detection Approach based on Hybrid Unsupervised Learning Technologies in NIDS

  • Kangseok Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.494-510
    • /
    • 2024
  • Internet users are exposed to sophisticated cyberattacks that intrusion detection systems have difficulty detecting. Therefore, research is increasing on intrusion detection methods that use artificial intelligence technology for detecting novel cyberattacks. Unsupervised learning-based methods are being researched that learn only from normal data and detect abnormal behaviors by finding patterns. This study developed an anomaly-detection method based on unsupervised machines and deep learning for a network intrusion detection system (NIDS). We present a hybrid anomaly detection approach based on unsupervised learning techniques using the autoencoder (AE), Isolation Forest (IF), and Local Outlier Factor (LOF) algorithms. An oversampling approach that increased the detection rate was also examined. A hybrid approach that combined deep learning algorithms and traditional machine learning algorithms was highly effective in setting the thresholds for anomalies without subjective human judgment. It achieved precision and recall rates respectively of 88.2% and 92.8% when combining two AEs, IF, and LOF while using an oversampling approach to learn more unknown normal data improved the detection accuracy. This approach achieved precision and recall rates respectively of 88.2% and 94.6%, further improving the detection accuracy compared with the hybrid method. Therefore, in NIDS the proposed approach provides high reliability for detecting cyberattacks.

Research Trend on Digital Twin Based on Keyword Frequency and Centrality Analysis : Focusing on Germany, the United States, Korea (키워드 빈도 및 중심성 분석에 기반한 디지털 트윈 연구 동향 : 독일·미국·한국을 중심으로)

  • Lee Taekkyeun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.2
    • /
    • pp.11-25
    • /
    • 2024
  • This study aims to analyze research trends in digital twin focusing on Germany, the US, and Korea. In Elsevier's Scopus, we collected 4,657 papers about digital twin published in from 2019 to 2023. Keyword frequency and centrality analysis were conducted on the abstracts of the collected papers. Through the obtained keyword frequencies, we tried to identify keywords with high frequency of occurrence and through centrality analysis, we tried to identify central research keywords for each country. In each country, 'digital_twin', 'machine_learning', and 'iot' appeared as research keywords with the highest interest. As a result of the centrality analysis, research on digital twin, simulation, cyber physical system, Internet of Things, artificial intelligence, and smart manufacturing was conducted as research with high centrality in each country. The implication for Korea is that research on virtual reality, digital transformation, reinforcement learning, industrial Internet of Things, robotics, and data analysis appears to have been conducted with low centrality, and intensive research in related areas appears to be necessary.

lwEPSep: A Lightweight End-to-end Privacy-preserving Security Protocol for CTI Sharing in IoT Environments

  • Hoonyong Park;Jiyoon Kim;Sangmin Lee;Daniel Gerbi Duguma;Ilsun You
    • Journal of Internet Technology
    • /
    • v.22 no.5
    • /
    • pp.1069-1082
    • /
    • 2021
  • The Internet of Things (IoT) is vulnerable to a wide range of security risks, which can be effectively mitigated by applying Cyber Threat Intelligence (CTI) sharing as a proactive mitigation approach. In realizing CTI sharing, it is of paramount importance to guarantee end-to-end protection of the shared information as unauthorized disclosure of CTI is disastrous for organizations using IoT. Furthermore, resource-constrained devices should be supported through lightweight operations. Unfortunately, the aforementioned are not satisfied by the Hypertext Transfer Protocol Secure (HTTPS), which state-of-the-art CTI sharing systems mainly depends on. As a promising alternative to HTTPS, Ephemeral Diffie-Hellman over COSE (EDHOC) can be considered because it meets the above requirements. However, EDHOC in its current version contains several security flaws, most notably due to the unprotected initial message. Consequently, we propose a lightweight end-to-end privacy-preserving security protocol that improves the existing draft EDHOC protocol by utilizing previously shared keys and keying materials while providing ticket-based optimized reauthentication. The proposed protocol is not only formally validated through BAN-logic and AVISPA, but also proved to fulfill essential security properties such as mutual authentication, secure key exchange, perfect forward secrecy, anonymity, confidentiality, and integrity. Also, comparing the protocol's performance to that of the EDHOC protocol reveals a substantial improvement with a single roundtrip to allow frequent CTI sharing.