• Title/Summary/Keyword: Cyanobacterial bloom

Search Result 88, Processing Time 0.035 seconds

Cyanobacterial Development and Succession and Affecting Factors in a Eutrophic Reservoir (부영양 저수지에서 남조류의 발달과 천이 및 영향 요인)

  • Kim, Ho-Sub;Hwang, Soon-Jin;Kong, Dong-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.121-129
    • /
    • 2007
  • This study was conducted to evaluate the causes and effects of cyanobacterial development and succession in a shallow eutrophic reservoir from March 2003 to February 2004. Phytoplankton succession, sedimentation rate, and sediment composition were analyzed. Algal bioassay also was conducted with the consideration of light, water temperature and nutrients. Cyanobacteria dominated throughout the year, except for spring season (March${\sim}$April) in which diatoms and flagellates dominated. Total cell density increased in July and November when P loading through inflows was high. Oscillatoria spp. and Aphanizomenon sp. were dominant in May and June, respectively, but replaced with Microcystis spp. in July. Thereafter, Microcystis spp. sustained until December, and again shifted to Oscillatoria spp. and Aphanizomenon sp. The dominance of Oscillatoria spp. in May was accompanied with high TN/TP ratio and the increase of water temperature and light intensity. While the dominance of Microcystis spp. was related with relatively low TN/TP ratio, ranging from 46 to 13 (average: 27). The sedimentation rate was highest in March (0.6 m $day^{-1}$) when diatoms dominated. During the period of cyanobacterial dominance, relatively high sedimentation rate was observed in May (0.4 m $day^{-1}$) and October (0.36m $day^{-1}$). C/N ratio of the sediment ranged $6{\sim}8$. Inorganic P concentration in the pore water was low when DO concentration was < 2 mg $O_2$ $L^{-1}$ in the hypolimnion, reflecting the P release from the sediment. Cyanobacterial growth rate depended on phosphorus concentration and water temperature, and high P concentration compensated for the low temperature in the growth rate. Our results suggest that the potential of cyanobacterial development and substantiality in eutrophic reservoirs be high throughout the year, as being supplied with enough P, and emphasize the consideration of sediment man. agement for the water quality improvement and algal bloom control.

Relations of Nutrient Concentrations on the Seasonality of Algal Community in the Nakdong River, Korea (낙동강 조류군집의 계절적 변화와 영양염 농도와의 관계)

  • Yu, Jae Jeong;Lee, Keung Lak;Lee, Hye Jin;Hwang, Jeong Wha;Lyu, Heuy Seong;Shin, La Young;Park, A Reum;Chen, Se Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.110-119
    • /
    • 2015
  • The construction of the eight large weirs in the Nakdong River, the second largest river in Korea, caused big changes in the physical environment of the water system. Algal communities and their correlations with environmental factors, mainly nutrients were studied at five weir areas in the Nakdong River from 2010 to 2013. Water quality, hydrodynamics and algal composition were investigated. Results showed that flow velocities were reduced compared with that before weir construction near the areas where are located in the mid and upstreams of the Nakdong River. A seasonal algal community succession was observed and it was mainly correlated with temperature and phosphorus. Diatoms were dominated from winter to spring months and massive diatomic blooms of Stephanodiscus sp. occurred early in March during survey period. Cyanobacterial blooms of Microcystis sp. occurred from July to September 2013 and was preceded by the lower total phosphorus concentration of $0.05mg\;L^{-1}$. The correlations between total phosphorus concentrations and algal abundances were not significant during the survey periods. However, significant correlation with cyanobacteria was found in the period of weir construction after only at the GG survey site and blooms periods of 7 times in the survey sites, and its correlation coefficients were 0.53 (p<0.001) and 0.42 (p<0.01) respectively. When algal bloom was observed, partially low nutrient concentration was observed in the Nakdong River. In conclusion, partially low nutrient concentration which may result from algal bloom was observed, and we presume it caused the reduction of algal abundunces.

A study on the characteristics of cyanobacteria in the mainstream of Nakdong river using decision trees (의사결정나무를 이용한 낙동강 본류 구간의 남조류 발생특성 연구)

  • Jung, Woo Suk;Jo, Bu Geon;Kim, Young Do;Kim, Sung Eun
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.312-320
    • /
    • 2019
  • The occurrence of cyanobacteria causes problems such as oxygen depletion and increase of organic matter in the water body due to mass prosperity and death. Each year, Algae bloom warning System is issued due to the effects of summer heat and drought. It is necessary to quantitatively characterize the occurrence of cyanobacteria for proactive green algae management in the main Nakdong river. In this study, we analyzed the major influencing factors on cyanobacteria bloom using visualization and correlation analysis. A decision tree, a machine learning method, was used to quantitatively analyze the conditions of cyanobacteria according to the influence factors. In all the weirs, meteorological factors, temperature and SPI drought index, were significantly correlated with cyanobacterial cell number. Increasing the number of days of heat wave and drought block the mixing of water in the water body and the stratification phenomenon to promote the development of cyanobacteria. In the long term, it is necessary to proactively manage cyanobacteria considering the meteorological impacts.

A Protocol of Ludox Treatment for Physiological and Molecular Biological Research of Freshwater Cyanobacteria (퇴적층 남조류 휴면세포의 생리적-분자생물학적 연구를 위한 Ludox 처리법)

  • Keonhee Kim;Kyeong-eun Yoo;Hye-in Ho;Chaehong Park;Hyunjin Kim;Soon-Jin Hwang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.94-103
    • /
    • 2023
  • Cyanobacterial resting cells, such as akinetes, are important seed cells for cyanobacteria's early development and bloom. Due to their importance, various methods have been attempted to isolate resting cells present in the sediment. Ludox is a solution mainly used for cell separation in marine sediments, but finding an accurate method for use in freshwater is difficult. This study compared the two most commonly used Ludox methods (direct sediment treatment and sediment distilled water suspension treatment). Furthermore, we proposed a highly efficient method for isolating cyanobacterial resting cells and eDNA amplification from freshwater sediments. Most of the resting cells found in the sediment were akinete to the Nostocale and were similar to those of Dolichospermum, Cylindrospermum, and Aphanizomenon. Twenty times more akinetes were found in the conical tube column using the sediment that had no treatment than in the sample treated by suspending the sediment in distilled water. Akinete separated through Ludox were mainly spread over the upper and lower layers in the column rather than concentrated at a specific depth in the column layer. The mibC, Geo, and 16S rDNA genes were successfully amplified using the sediment directly in the sample. However, the amplification products of all genes were not found in the sample in which the sediment was suspended in distilled water. Therefore, 5 g to 10 g of sediment is used without pretreatment when isolating cyanobacterial resting cells from freshwater sediment. Cell isolation and gene amplification efficiency are high when four times the volume of Ludox is added. The Ludox treatment method presented in this study isolates cyanobacterial resting cells in freshwater sediment, and the same efficiency may not appear in other biotas. Therefore, to apply Ludox to the separation of other biotas, it is necessary to conduct a pre-experiment to determine the sediment pretreatment method and the water layer where the target organism exists.

Relationship between a Dense Bloom of Cyanobacterium Anabaena spp. and Rainfalls in the North Han River System of South Korea (북한강 수계의 남조 Anabaena 대발생과 강우의 관계)

  • Byun, Jeong-Hwan;Cho, In-Hwan;Hwang, Soon-Jin;Park, Myung-Hwan;Byeon, Myeong-Seop;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.116-126
    • /
    • 2014
  • To evaluate the relationship between dynamics of Cyanobacterial bloom and rainfalls, a monthly monitoring of water quality and phytoplankton from the three serial lakes (Lake Ui-am, Lake Chung-pyeong and Lake Pal-dang) in the North Han River System were examined 12 times from May 2012 to March 2013. A dense bloom of cyanobacterium Anabaena spp., was occurred over three lakes in the summer season of 2012. In Lake Ui-am, the Anabaena population appeared in June, showed a peak in July (43,850 cells $mL^{-1}$) and disappeared in November 2012. In Lake Chung-pyeong and Lake Pal-dang, Anabaena population commonly appeared in July, showed the peaks (31,648 cells $mL^{-1}$ and 7,136 cells $mL^{-1}$, respectively) in August, and entirely disappeared in September 2012. Over the three lakes, the phytoplankton community was commonly dominated by diatoms before Monsoon, cyanobacteria during Monsoon, and diatoms after Monsoon, respectively, indicating a Monsoon-dependent succession. A correlation analysis revealed that dynamics of Anabaena population was strongly related with rainfall (r=0.72, r=0.83, r=0.88, P<0.01 for three lakes), and partly with nutrients, inflow and outflow of lakes. Therefore, this study indicates that the outbreak and destruction of Anabaena bloom in North Han River System between 2012 and 2013 was impacted by rainfalls. However, a high density of cyanobacteria in Lake Ui-am remained after Monsoon, and thus, may paroduce bad-order and toxins from phytoplankton.

Accumulation of Microcystins in Fish and Evaluation of Potential Human Health Risks: A Case Study on a Eutrophic Reservoir in Korea (마이크로시스틴의 어류내 축적성 및 인체 위해성 평가: 국내 저수지 사례연구)

  • Yoon, Hyojung;Seo, Jungkwan;Kim, Taksoo;Jo, Areum;Kim, Jungkon;Lee, Doohee;Kim, Pilje;Choi, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.1
    • /
    • pp.10-18
    • /
    • 2016
  • Objectives: Microcystin (MC) produced during cyanobacterial blooms is a worldwide problem presenting a serious health threats to humans and ecosystems. During July through October of 2013, the Ilwol Reservoir experienced a high biomass of phytoplankton (maximum $211.7mg/m^3$ of Chlorophyll-a) containing the toxigenic cyanobacterium Oscillatoria sp. The aim of this study is to analyze MC concentration in the reservoir water, as well as in representative fish species (Carassius cuvieri, Carassius auratus, Channa argus). We also evaluated the human health risk of exposure to MCs accumulated in the fish. Methods: Concentrations of MCs in the water and fish samples were analyzed by liquid chromatography with a triple quadrupole tandem mass spectrometer (LC/MS/MS) and enzyme-linked immunosorbent assay (ELISA). Results: The total levels of four MC variants, including MC-LR, MC-RR, MC-YR and MC-LA were below the WHO drinking water guideline limit (1 ug MC-LR per liter) both for the dissolved and particulate fraction present in the water samples. The mean MC concentrations in the livers of all species were significantly higher than in the gills (p < 0.01) and muscles (p < 0.05). The values of estimated daily intake of MCs in muscles, the edible part of the fish, would be only $0.005-0.015{\mu}g/kg{\cdot}day$, much lower than WHO's provisional tolerable daily intake of $0.04{\mu}g/kg{\cdot}day$. Conclusion: This study suggests that, owing to the spatial distribution or temporal variation of MC, there is a need for careful monitoring of cyanotoxin in reservoir water and aquatic animals to protect public health.

Analysis of anatoxin-a in aqueous and cyanobacterial samples from korean lakes by liquid chromatography with fluorescence detection (액체크로마토그래피-형광검출법에 의한 호소시료의 아나톡신-a 분석)

  • Lee, In-Jung;Lee, Chul-Gu;Heo, Seong-Nam;Lee, Jae-Gwan
    • Analytical Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.225-230
    • /
    • 2011
  • Anatoxin-a is a cyanobacterial neurotoxin with a high toxicity produced by Anabaena, Aphanizomenon and Oscillatoria. Water bloom, formed by Anabaena has been occurring frequently in Lake Yeongchun. It is need to develop a sensitive method for determination of anatoxin-a to control potential hazard in raw water resources. In this study, we developed a highly sensitive analytical method of anatoxin-a using solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with fluorescence detection. Anatoxin-a was converted into a highly fluorescent derivative using 4-fuoro-7-nitro-2,1,3-benzoxadiazole (NBF-F). The method was evaluated in terms of linearity of calibration curve, recovery and repeatability, and the adequate values were obtained. The method detection limit was $0.034\;{\mu}g/g$ and $0.022\;{\mu}g/L$ for algal and water samples, respectively. The concentrations of anatoxin-a were measured in algal and water samples from Lake Andong, Yeongchun and Daechung and ranged from $0.135\;{\mu}g/g$ to $10.979\;{\mu}g/g$ in algal samples and not detected in water samples.

Effects of Environmental Factors on Algal Communities in the Nakdong River (낙동강의 환경요인이 조류군집 구성에 미치는 영향)

  • Yu, Jae Jeong;Lee, Hae Jin;Lee, Kyung-Lak;Lee, In Jeong;Jung, Gang Young;Cheon, Se Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.539-548
    • /
    • 2014
  • This study was carried out to investigate algal community structures and their correlations with environmental factors on five weir areas in the Nakdong River, South Korea. Water qualities, hydrodynamics, meteorological conditions and algal species compositions were observed in studied sites from May 2010 to Dec. 2013. Results showed that average total phosphorus concentration of 2013 was decreased by 52.4% in comparing with that from 2010 to 2011. Chlorophyll.a concentrations were positive significant with water temperature, pH, total phosphorus and total nitrogen, but is not significant with turbidity and suspended solids. Seasonal successions of algae were observed that Stephanodiscus sp. was dominant species with 65.3% of dominant frequency in studied site. Large algal biomass of the low temperature-adapted diatoms were observed during temperature range of $4{\sim}9^{\circ}C$, but large cyanobacterial biomass mainly during high temperature period ranged from $22^{\circ}C$ to $32^{\circ}C$. Microcystis sp. dominated during high water temperature in summer. The yearly correlations of algal biomass with accumulated solar radiations were not significant but seasonal correlations of summer from June to August were significant with correlation coefficient 0.33 (p<0.05). There were not significant correlations between turbidities and algal biomass. Turbidity and suspended solids concentrations were not significant correlation with algal biomass. According to the results, algal communities had strong correlation with water temperature and had partially correlation with solar radiation. For an effective management of algal blooms, water managers should survey with more long-term monitoring of various environmental factors and algal communities.

Semiweekly Variation of Spring Population of a Mixotrophic Ciliate Myrionecta rubra (=Mesodinium rubrum) in Keum River Estuary, Korea (춘계 금강 하구에서 혼합영양 섬모류인 Myrionecta rubra (=Mesodinium rubrum) 개체군의 단주기 변동)

  • Yih, Won-Ho;Myung, Geum-Og;Kim, Hyung-Seop;Jeong, Hae-Jin
    • ALGAE
    • /
    • v.20 no.3
    • /
    • pp.207-216
    • /
    • 2005
  • Myrionecta rubra, a mixotrophic ciliate, is a cosmopolitan red tide species which is commonly found in neritic and estuarine waters. M. rubra had long been listed as an “nculturable protist”until 2 different laboratory strains were finally established in 2 research groups at the beginning of this century, enabling us to perform initiative investigation into various aspect of the live M. rubra strains (Gustafson et al. 2000; Yih et al. 2004b; Johnson and Stoecker 2005). Field sampling was carried out on high tide at 2 fixed stations around Kunsan Inner Harbor (St.1 near the Estuarine Weir and St.2 off Kunsan Ferry Station) every other day for 4 months from mid-February 2004 to understand detailed figure of the recurrent spring blooms of M. rubra following the onset of the water gates operation of the Keum River Estuarine Weir on August 1994. With its maximum abundance of 272 cells mL$^{-1}$ in St.1, fluctuation pattern of the M. rubra population at the 2 stations was strikingly similar. Notable growth of M. rubra population started on late April, to cause M. rubra red tides during one month from mid-May in which “xceptionally low salinity days”without its red tide were intermittently inserted. High abundance of M. rubra over 50 cells mL$^{-1}$ was recorded at samples with their water temperature and salinity higher than 15${^{\circ}C}$ and 4.0 psu, respectively. During pre-bloom period when salinity fluctuation is moderate and the water temperature is cooler than 15°C, Skeletonema costatum, a chain-forming centric diatom, was most dominant. Cyanobacterial species such as Aphanizomenon flos-aquae and Phormidium sp. replaced other dominant phytoplankters on the days with “xceptionally low salinity”even during the main blooming period of M. rubra. To summarize, M. rubra could form spring blooms in Keum River Estuary when the level of salinity fluctuation was more severe than that for the dominant diatom Skeletonema costatum and milder than that for the predominance by freshwater cyanobacteria. Therefore, optimal control of the scale and frequency of freshwater discharges might lead us to partially modify the fluctuation pattern of M. rubra populations as well as the period of spring blooms by M. rubra in Keum River Estuary. Sampling time interval of 2 days for the present study or daily sampling was concluded to be minimally required for the detailed exploration into the spring blooms by M. rubra populations in estuaries with weirs like Keum River Estuary.

Changes of the Environmental Factors in Upo Wetland (우포늪의 수환경요인 변화)

  • Lee, Jung-Joon;Lee, Jung-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.3
    • /
    • pp.306-313
    • /
    • 2009
  • In the Upo wetland, physico-chemical factors were observed during the period from March 2005 to December 2007 on a monthly basis. In the Upo wetland, water temperatures ranged $3.4{\sim}34.5^{\circ}C$. Conductivities were in the range of 133~806 ${\mu}S\;cm^{-1}$, which showed about 140 ${\mu}S\;cm^{-1}$ below in comparison with the precedent studies. The pH levels were between 6.7~9.1 with lower level in summertime. The dissolved oxygens were between 0.06~18.23 mg $L^{-1}$. COD ranged 4.9~20.8 mg $L^{-1}$, and showed a tendency to decrease every year. Nitrogen nutrients such as nitrate nitrogen ($NO_3-N$), ammonia nitrogen ($NH_3-N$) and total nitrogen (T-P) showed that they were generally decreased in comparison with those in the precedent studies. However the total nitrogen (T-N) is still considerably higher than the standard concentration level of eutrophication and algal blooming. Phosphate phosphorus ($PO_4-P$) and total phosphorus (T-P) were also shown as to be reduced considerably comparing with the values in the precedent studies. However, It was found out that total phosphorus (T-P) was dissolved over the criteria concentration of eutrophication. The average of TN/TP ratio was 18 in the Upo wetland, which proved that phosphorus was the limiting factor to the growth of phytoplankton in the Upo wetland. The chl-$\alpha$ was the highest in wintertime and the lowest in summertime, and especially in 2006 summer when the cyanobacterial bloom developed, it showed extremely high concentration.