• Title/Summary/Keyword: Cyanobacteria Bloom

Search Result 105, Processing Time 0.02 seconds

Spatial Distribution Mapping of Cyanobacteria in Daecheong Reservoir Using the Satellite Imagery (위성영상을 이용한 대청호 남조류의 공간 분포 맵핑)

  • Back, Shin Cheol;Park, Jin Ki;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.53-63
    • /
    • 2016
  • Monitoring of cyanobacteria bloom in reservoir systems is important for water managers responsible of water supply system. Cyanobacteria affect the taste and smell of water and pose considerable filtration problems at water use places. Harmful cyanobacteria bloom in reservoir have significant economic impacts. We develop a new method for estimating the cyanobacteria bloom using Landsat TM and ETM+ data. Developed model was calibrated and cross-validated with existing in situ measurements from Daecheong Reservoir's Water Quality Monitoring Program and Algae Alarm System. Measurements data of three stations taken from 2004 to 2012 were matched with radiometrically converted reflectance data from the Landsat TM and ETM+ sensor. Stepwise multiple linear regression was used to select wavelengths in the Landsat TM and ETM+ bands 1, 2 and 4 that were most significant for predicting cyanobacteria cell number and bio-volume. Based on statistical analysis, the linear models were that included visible band ratios slightly outperformed single band models. The final monitoring models captured the extents of cyanobacteria blooms throughout the 2004-2012 study period. The results serve as an added broad area monitoring tool for water resource managers and present new insight into the initiation and propagation of cyanobacteria blooms in Daecheong reservoir.

Long-term Preservation of Bloom-forming Cyanobacteria by Cryopreservation

  • Park, Hae-Kyung
    • ALGAE
    • /
    • v.21 no.1
    • /
    • pp.125-131
    • /
    • 2006
  • Long-term preservation of bloom-forming cyanobacteria was evaluated using cryopreservation and freeze-drying of nine strains belonging to four genera and seven species. All test strains, except Aphanizomenon flos-aquae NIER- 10028, showed partial or complete survival following cryopreservation and freeze-drying. Frozen and freeze-dried strains were preserved for more than two years and were revived monthly. Most strains showed higher post-thaw viability after cryopreservation, especially without cryoprotectant compared to freeze-drying. Microcystis aeruginosa NIER-10010, M. viridis NIER-10020, M. ichthyoblabe NIER-10023, M. novacekii NIER-10029 and Oscillatoria sancta NIER-10027 were revived after 2.5 years of cryopreservation. These results suggest that cryopreservation may be an easy and timesaving long-term preservation method for bloom-forming cyanobacteria.

Alternative Alert System for Cyanobacterial Bloom, Using Phycocyanin as a Level Determinant

  • Ahn, Chi-Yong;Joung, Seung-Hyun;Yoon, Sook-Kyoung;Oh, Hee-Mock
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.98-104
    • /
    • 2007
  • Chlorophyll ${\alpha}$ concentration and cyanobacterial cell density are regularly employed as dual criteria for determinations of the alert level for cyanobacterial bloom. However, chlorophyll ${\alpha}$ is not confined only to the cyanobacteria, but is found universally in eukaryotic algae. Furthermore, the determination of cyanobacterial cell counts is notoriously difficult, and is unduly dependent on individual variation and trained skill. A cyanobacteria-specific parameter other than the cell count or chlorophyll ${\alpha}$ concentration is, accordingly, required in order to improve the present cyanobacterial bloom alert system. Phycocyanin has been shown to exhibit a strong correlation with a variety of bloom-related factors. This may allow for the current alert system criteria to be replaced by a three-stage alert system based on phycocyanin concentrations of 0.1, 30, and $700\;{\mu}g/L$. This would also be advantageous in that it would become far more simple to conduct measurements without the need for expensive equipment, thereby enabling the monitoring of entire lakes more precisely and frequently. Thus, an alert system with superior predictive ability based on highthroughput phycocyanin measurements appears feasible.

Developmental Characteristic of Cyanobacterial Bloom in Lake Daecheong (대청호의 남조세균 수화 발달 특성)

  • Park Jong-Geun
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.3 s.59
    • /
    • pp.304-314
    • /
    • 2005
  • The occurrence of cyanobacterial bloom in Korean lakes of the summer is generalized. The characteristic of cyanobacterial community was explored. And the developmental stage of cyanobacterial bloom was divided into three phases, 'preparatory phase', 'bloom phase' and 'extinction phase' Cyanobacterial bloom started during the end of June at site 1, transition Bone of Lake Daecheong. The period of water bloom in normal year was about 60~70 days at site 4, lacustrine Bone, but it was unusually 11 days from July 19 in 1999. M. aerugilnosa first occurred in June, had a peak of standing crop curve from the end of August to the beginning of September in 1998 and 2002 and the end of July in 1999 and 2001. The standing crop of M. aeruginosa occupied $68.1\%$ of phytoplankton, $74.2\%$ of cyanobacteria and $88.8\%$ of genus Microcystis, Anabaena spp. first occurred in April, was above 10,000 cells $mL^{-1}$ from the end of August to about the middle of September in 1998. The effect of rainfalls on cyanobacterial bloom was different according to the phases. The rainfalls of preparatory phase assist the growth of cyanobacteria, but accelerate the decrease of cyanobacteria in extinction phase. In bloom phase, the heavy rainfalls reduce the development of the bloom, while the slight ones display only a little effects.

Control of Cyanobacteria and Phytoplankton Using Physico-chemical Methods (물리·화학적 방법을 이용한 Cyanobacteria와 식물 플랑크톤의 제어)

  • Jheong, Weon-Hwa;Jeon, Eun-Hyung;Ahn, Tea-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.5
    • /
    • pp.75-84
    • /
    • 2004
  • Loess, PAC, MACF and plants were applied to the control of the phytoplankton bloom in laboratory and in field, In field experiment using oil fence, 5ppm concentration of coagulant(PAC) was observed to be effective in controlling the cyanobacterial bloom, resulting in 90% removal of cyanobacteria and phytoplankton from the water column, hi case of Synedra sp., however, only 50% of biomass decreased with the same PAC concentration. MACF(micro-air bubble coagulation and floating), a kind of physicochemical method, was applied to the column of the Kyongan stream and resulted in over 80% chlorophyll a and 73.5% TP removal, Chlorophyll a and total phosphorus were effectively removed from water body when 2.0 g/L of loess with the particle radius of 125 ${\mu}m$ was inputted. In case of experiments involving plants, big cone pine, gingko, and pine needle were observed to be effective in restraining phytoplankton bloom at 0.5g/200ml level. During a field test done at Kyungan stream, where Microcystis heavily occurred, Pine needle and big cone pine were observed to be effective on suppressing algal growth.

Study on Introduction to Predicting Indicator of Cyanobacteria Dominance in Algae Bloom Warning System of Hangang Basin (한강유역 조류경보제에 남조류 우점 예측인자 도입에 관한 연구)

  • Kim, Tae Kyun;Choi, Jae Ho;Lee, Kyung Ju;Kim, Young Bae;Yu, Sung Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.378-385
    • /
    • 2014
  • The chlorophyll-a concentration in algae bloom warning system of Hangang basin did not predict the cyanobacteria dominance. In this study, suggest the predicting indicator of cyanobacteria dominance through analyzing the environmental factors affecting on the cell count of cyanobacteria. Firstly, the dominance of algae was analyzed with seasonal variation during Jan. 2012~Sep. 2013. The diatom dominated phytoplankton communities during the period of January~April. In the May~June, the green algae dominated. And, the dominance of algae was changed to cyanobacteria in the July~August. Also, the environmental factors affecting to cyanobacteria blooms ; nutrients (TN, TP), temperature, precipitation, dam-discharge were evaluated during the study period. Rather than temperature factor, relatively low dam discharge causes cyanobacteria to grow rapidly and create a blooms. The low dam-discharge may increase the water retention time. Finally, it is proved that a low ratio of TN to TP (<29:1) can favour the development of cyanobacteria blooms. Thus, the predicting indicator (TN:TP) have need to apply to the alarm bloom warning system of Hangang basin.

Influence of Rainfall on Cyanobacterial Bloom in Daechung Reservoir

  • Ahn, Chi-Yong;Kim, Hee-Sik;Yoon, Byung-Dae;Oh, Hee-Mock
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.413-419
    • /
    • 2003
  • The water quality and algal communities in the Daechung Reservoir, Korea, were monitored from summer to autumn in 1999 and 2001. Although the average weekly precipitations during June and July were very similar in 1999 and 2001, they were much different during August and September, the so-called blooming season. The rainfall in 1999 increased about 70% after late August, whereas it decreased to the one-fifth level in 2001. The higher concentrations of chlorophyll- a, phycocyanin, and cyanobacteria were observed in 2001, which resulted in the dense algal bloom. In addition, in 2001, the cyanobacterial percentage remained above 80% during the investigation period, and the cyanobacteria were exclusively composed of Microcystis spp. Conversely, there was no report on the algal bloom in 1999. However, the peak bloom seasons were the same for both years, from late August to early September, irrespective of the amount of precipitation. These results suggest that the magnitude and duration of rainfall before bloom season are important factors determining the extent of cyanobacterial bloom in this system.

Occurrence and Succession Pattern of Cyanobacteria in the Upper Region of the Nakdong River : Factors Influencing Aphanizomenon Bloom (낙동강 상류 수역에서 남조류 발생과 천이패턴 - Aphanizomenon 속을 중심으로 -)

  • Ryu, Hui-Seong;Park, Hae-Kyung;Lee, Hae-Jin;Shin, Ra-Young;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.52-59
    • /
    • 2016
  • This study investigated the occurrences and succession patterns of harmful cyanobacteria, as well as environmental factors, during a 3-year period (September 2012 to August 2015) in the upper region of the Nakdong River around Sangju weir. A total of 27 cyanobacterial taxa were observed in this study, and classified into 26 species and 1 variety belonging to 11 genera, 5 families, and 3 orders. Cell density ranged from 24 to 42,001 cells/ml, with a geometric mean of 33 cells/ml, during the survey period. The dominant orders differed depending on the survey year; order Oscillatoriales in 2013, Chroococcales in 2014 and Nostocales in 2015. An Aphanizomenon bloom occurred in June 2015 at which time the highest cell density of 36,873 cells/ml was detected in the upper region of the Nakdong River, where as the Aphanizomenon spp. cell density (190-1,704 cells/ml) had been low prior to that time. An Aphanizomenon bloom also occurred at around the same time downstream in the Young River, a major inflow branch of the Nakdong River. The Aphanizomenon cell density along the Nakdong River increased markedly after joining of the YoungRiver, indicating that the Aphanizomenon bloom in the YoungRiver caused a bloom in the Nakdong River. Meteorological and environmental parameters, such as very low precipitation, higher water temperature, pH, and TP concentration, and lower TN/TP ratio, in May and June of 2015 than in 2013 and 2014 exerted marked effects on the Aphanizomenon bloom in June 2015 in the Young River.

Analysis of Environmental Factors Associated with Cyanobacteria Dominance in Baekje Weir and Juksan Weir (백제보와 죽산보에서 남조류 우점 환경요인 분석)

  • Kim, Sung-Jin;Chung, Se-Woong;Park, Hyung-Seok;Cho, Young-Cheol;Lee, Hee-Suk;Park, Yeon-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.3
    • /
    • pp.257-270
    • /
    • 2019
  • Followingthe Four Rivers Project, cyanobacterial blooms have been frequently observed in the upstream of the installed weirs. The aim of this study was to characterize the major environmental factors that are associated with the cyanobacteria dominance in Baekje Weir (Geum River) and Juksan Weir (Youngsan River) based on intensive experiments and systematic data mining methods. The factors related to the cyanobacteria dominance include7-days cumulative rainfall (APRCP7), 7-days averaged flow (Q7day), water temperature (Temp), stratification strength (${\Delta}T$), electronic conductivity (EC), DO, pH, $NO_3-N$, $NH_3-N$, TN, TP, $PO_4-P$, Chl-a, Fe, BOD, COD, TOC, and $SiO_2$. The most highly correlatedfactors to the dominant cyanobacteria were found to be EC, Temp, Q7day, $PO_4-P$ in theBaekje Weir. On the other hand, those dominant in the Juksan Weir were ${\Delta}T$, TOC, Temp, EC and TN. The EC showed a strong correlation with cyanobacteria dominance in both weirs because a high EC represents a persisted low flow condition. The cyanobacteria dominance was as high as 56 % when the EC was equal or greater than $418{\mu}S/cm$ in Baekje Weir. It was as high as 63% when the ${\Delta}T{\geq}2.1^{\circ}C$ in the Juksan Weir. However, nutrients showed a minor correlation with cyanobacteria dominance in both weirs. The results suggest that the cyanobacteria dominate in astate where the water flow rate is low, water temperature is high and thermal stratification is strengthened. Therefore, the improvement of flow regimes is the most important to prevent persistent thermal stratification and formation of cyanobacteria bloom in theBaekje and JuksanWeirs.

A study on the management and improvement of alert system according to algal bloom in the Daecheong Reservoir (대청호 조류발생에 따른 경보제 운영 및 개선 방안 고찰)

  • Jeong, Dong-Hwan;Lee, Jaejeong;Kim, Kyoyoung;Lee, Daehee;Hong, Sunhwa;Yoon, Johee;Hong, Sukyoung;Kim, Taeseung
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.915-925
    • /
    • 2011
  • Following the industrialization and urbanization in Korea, algal bloom causes aesthetic displeasure and many other problems such as taste and odor, coloration, scum, increase in pH, filter-bed blockage. There were some cases involving human death by microcystins during summertime in foreign countries. In Korea, Harmful cyanobacteria such as Microcystis and Anabaena develop in summer in the Daecheong reservoir, one of the main water resources, with the retention time of above 200 days. To better control algal bloom, the Ministry of Environment has been running algal bloom alert system from 1998 for the Daecheong reservoir, which needs to be improved to reflect the characteristics of river-type lakes. For this reason, we try to find new measures to improve an algal bloom alert system for each water zone considering the characteristics of harmful cyanobacteria in this study.