• 제목/요약/키워드: Cyanide(CN)

검색결과 81건 처리시간 0.024초

도금폐수내 유리시안과 착염시안 및 중금속의 처리특성 (II) - aldehyde와 polysulfide첨가에 따른 영향 - (Treatment Characteristics of Plating Wastewater Containing Freecyanide, Cyanide Complexes and Heavy Metals (II) - Effect of Aldehyde Compounds and Polysulfide -)

  • 정연훈;이수구
    • 한국물환경학회지
    • /
    • 제26권4호
    • /
    • pp.687-690
    • /
    • 2010
  • The objective of this study is to investigate the effect of aldehyde compounds and ploysulfide as accelerating agents on removal of heavy metals and CN in plating wastewater. As a results of the experiments, the removal efficiency of cyanide using the formaldehyde type of aldehydes was the highest at pH 9. Next types were sodium formaldehyde bisulfite addut> paraldehyde> paraformaldehyde. Also, optimum pH and dosage for treating the residual heavy metals by using polysulfide were pH 9 and 30 mg/L, respectively. The removal efficiencies of cyanide, chromium, zinc and copper were above 96.7% at optimum condition.

금속착물로부터 HCN 생성에 대한 촉매반응연구 (Catalysis Reaction for the Formation of Hydrogen Cyanide from Metal Complex)

  • 박흥재
    • 한국환경과학회지
    • /
    • 제3권4호
    • /
    • pp.439-443
    • /
    • 1994
  • In aqueous acid solution ${[Cr(CN)_6]}^{3-}$ aquates via a series of stepwise stereospecific reactions to give ${[Cr{(H_2O)}_6]}^{3+}$as the final product.Some of the intermediate cyanoaquo complexes in the sequence have been isolated.These complexes aquate by both acid independent and acid denpendent pathways, the latter involving protonation of the cyano ligands followed by aquation of the singly protonated species. The kinetic data for the aquation of {[CrCN{(H_2O)}_5]}^{2+}$ are consistent with the transition state structure ${[{(H_2O)}_4Cr(CN)-OH-Cr{(H_2O)}_5]}^{3+}$. Addition of $Cr^{2+}$ to solutions of cyanocobalt(III) complexes produces the metastable intermediate${[CrNC{(H_2O)}_5]}^{2+}$ This isomerizes to in a $Cr^{2+}$-catalyzed reaction which occurs by a ligand-bridged electron-change mechnism. From acid catalysis on these aquation reactions, it product HCN. Especially, $HSO_3$-ions do the role of catalyst in the formation of HCN from $CrCN^{3-}$

  • PDF

크롬과 시안이 공존하는 폐수의 전해처리 특성 (Characteristics of Electrolytic Treatment for Chromium and Cyanide containing Wastewater)

  • 정일현;윤용수
    • 환경위생공학
    • /
    • 제13권3호
    • /
    • pp.85-92
    • /
    • 1998
  • In this study, the electrolytic treatment by one-stage electrolysis was investigated for electroplating wastewater containing $Cr^{6+}$ and $CN^{-}$. From the results, we concluded as follows : Optimum initial pH of wastewater was pH : 3. Amount of optimum addition of electroltyte(NaCl) was 0.1 wt%. Optimum potential for electrolysis was 5 volt. Concentration and removal efficiency for $Cr^{6+}$ and $CN^{-}$ were under 1 mg/L and above 99% at optimum conditions. And the feasibility of electrolytic treatment for electroplating wastewater containing $Cr^{6+}$ and $CN^{-}$ was certified.

  • PDF

형광시약 Safranine-O를 이용한 유리 시안화 이온의 분광형광법 정량 (Spectrofluorimetric determination of free cyanide ion with fluorescent safranine-O)

  • 최희선
    • 분석과학
    • /
    • 제25권3호
    • /
    • pp.159-163
    • /
    • 2012
  • A spectrofluorimetric method has been developed for the determination of free $CN^-$ in real samples with fluorescent safranine-O. When safranine-O interacts electrostatistically with $CN^-$, the fluorescent intensity of safranine-O is decreased. Several experimental conditions such as pH of the sample solution and the amount of safranine-O were optimized. $Ag^+$ interfered higher than any other ions. Interference of $Ag^+$ could be disregarded because $Ag^+$ was scarcely contained or mostly complexed with $CN^-$ in selected real samples. With this proposed method, the linear range of $CN^-$ was from 5.0 to 110 ng/mL and the detection limit of $CN^-$ was 2.9 ng/mL. For validating this technique, real samples (Cu, Ag, Au electroplating wastewater, and untreated wastewater in university and in sewage treatment plant) were used. Recovery yields of 91.5%~106.0% were obtained. Based on experimental results, it is proposed that this technique can be applied to the practical determination of free $CN^-$.

Cu - CN 함유 폐수의 화학적 산화 (Chemical Oxidation of Cu - and CN - contained Wastewater)

  • 유근우;서형준
    • 청정기술
    • /
    • 제5권1호
    • /
    • pp.20-29
    • /
    • 1999
  • Cu-CN을 함유한 폐수를 펜톤산화 - 응집 - 침전의 공정으로 처리할 때, 펜톤 산화시 pH, 반응시간, 시안과 과산화수소의 몰비, 철염과 과산화수소 농도의 질량비 변화 그리고 수산화물 침전시 pH 변화에 따른 시안화물 및 구리의 최적의 제거율 조건을 조사하였다. 실험에 사용된 모든 폐수에 대해 펜톤 산화 반응의 최적 pH는 3~5 그리고 반응시간은 30분에서 시안의 제거율이 81.2%~99%로 가장 높게 나타났으며, $H_2O_2$$FeSO_4{\cdot}7H_2O$의 최적 주입량은 $Cu^{2+}$:CN(molar ratio)=2:1, 1:1, 1:2, 1:10인 폐수에서는 각각 214, $428mg/{\ell}$, 107, $161mg/{\ell}$, 214, $214mg/{\ell}$, 520, $500mg/{\ell}$으로, $Cu^+$:CN=1:10인 폐수에서는 900, $1050mg/{\ell}$으로 나타났다. 산화 반응 후 구리를 수산화물로 침전 시킨 결과 모든 폐수에 대해 pH 7에서 그 제거율이 각각 98.92, 98.52, 92.46, 90.6% 그리고 95%로 가장 높게 나타났다.

  • PDF

Determination of Cyanogenic Compounds in Edible Plants by Ion Chromatography

  • Cho, Hye-Jeon;Do, Byung-Kyung;Shim, Soon-Mi;Kwon, Hoonjeong;Lee, Dong-Ha;Nah, Ahn-Hee;Choi, Youn-Ju;Lee, Sook-Yeon
    • Toxicological Research
    • /
    • 제29권2호
    • /
    • pp.143-147
    • /
    • 2013
  • Cyanogenic glycosides are HCN-producing phytotoxins; HCN is a powerful and a rapidly acting poison. It is not difficult to find plants containing these compounds in the food supply and/or in medicinal herb collections. The objective of this study was to investigate the distribution of total cyanide in nine genera (Dolichos, Ginkgo, Hordeum, Linum, Phaseolus, Prunus, Phyllostachys, Phytolacca, and Portulaca) of edible plants and the effect of the processing on cyanide concentration. Total cyanide content was measured by ion chromatography following acid hydrolysis and distillation. Kernels of Prunus genus are used medicinally, but they possess the highest level of total cyanide of up to 2259.81 $CN^-$/g dry weight. Trace amounts of cyanogenic compounds were detected in foodstuffs such as mungbeans and bamboo shoots. Currently, except for the WHO guideline for cassava, there is no global standard for the allowed amount of cyanogenic compounds in foodstuffs. However, our data emphasize the need for the guidelines if plants containing cyanogenic glycosidesare to be developed as dietary supplements.

In Situ Scanning Tunneling Microscope of Cyanide and Thiocyanate Adsorption on Pt(111)

  • Yau, Shueh-Lin;Kim, Youn-Geun;Itaya, Kingo
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.723-730
    • /
    • 1995
  • Cyclic voltammetry and in situ STM were employed to examine the interfacial structures of a Pt(111) electrode in 0.1 mM KCN (pH9.5) and 0.1 mM KSCN (pH7) solutions. In situ STM atomic resolution revealed well ordered (2${\surd}$3${\times}$2${\surd}$3)$R30^{\circ}$-6CN and ($2{\times}2$)-2SCN structures within the double layer charging region. Six CN adsorbates formed a hollow hexagon, which embraced a coadsorbed $K^+$ cation. In contrast, the coadsorbed $K^+$ cations on the SCN covered Pt(111) were poorly ordered, despite adsorbed SCN formed a long range ordered ($2{\times}2$)-2SCN adlattice. In situ STM revealed the pronounced influence of potential in controlling the structures of compact layers at the proximity of a Pt electrode. Cathodic polarization facilitated the replacement of the coadsorbed cations by protons.

  • PDF

시차펄스 음극벗김 전압전류법에 의한 시안이온 측정의 감도향상 (Increased Sensitivity in Cyanide Measurement by Differential-Pulse Cathodic Stripping Voltammetry)

  • 나문선;권영순;채명준
    • 대한화학회지
    • /
    • 제32권2호
    • /
    • pp.130-134
    • /
    • 1988
  • 수은방울전극에서 바로 시안이온을 시차펄스음극벗김 전압전류 법으로 측정한 결과 검출한계를 낮출수가 있었다. 가장 알맞는 실험조건은 다음과 같다. : 0.1M KCl-0.01M 인산염 지지전해질, pH 7, 석출전위 0.00V, 그리고 석출시간 3분이었다. 이 조건에서 검출한계는 $3{\times}10^{-7}M$ (8ppb) $CN^-$이다.

  • PDF

Detection of Abnormally High Amygdalin Content in Food by an Enzyme Immunoassay

  • Cho, A-Yeon;Yi, Kye Sook;Rhim, Jung-Hyo;Kim, Kyu-Il;Park, Jae-Young;Keum, Eun-Hee;Chung, Junho;Oh, Sangsuk
    • Molecules and Cells
    • /
    • 제21권2호
    • /
    • pp.308-313
    • /
    • 2006
  • Amygdalin is a cyanogenic glycoside compound which is commonly found in the pits of many fruits and raw nuts. Although amygdalin itself is not toxic, it can release cyanide (CN) after hydrolysis when the pits and nuts are crushed, moistened and incubated, possibly within the gastrointestinal tract. CN reversibly inhibits cellular oxidizing enzymes and cyanide poisoning generates a range of clinical symptoms. As some pits and nuts may contain unusually high levels of amygdalin such that there is a sufficient amount to induce critical CN poisoning in humans, the detection of abnormal content of amygdalin in those pits and nuts can be a life-saving measure. Although there are various methods to detect amygdalin in food extracts, an enzyme immunoassay has not been developed for this purpose. In this study we immunized New Zealand White rabbits with an amygdalin-KLH (keyhole limpet hemocyanin) conjugate and succeeded in raising anti-sera reactive to amygdalin, proving that amygdalin can behave as a hapten in rabbits. Using this polyclonal antibody, we developed a competition enzyme immunoassay for determination of amygdalin concentration in aqueous solutions. This technique was able to effectively detect abnormally high amygdalin content in various seeds and nuts. In conclusion, we proved that enzyme immunoassay can be used to determine the amount of amygdalin in food extracts, which will allow automated analysis with high throughput.