• Title/Summary/Keyword: Cutting-Simulation

검색결과 463건 처리시간 0.028초

신경회로망을 이용한 밀링 공정의 진동 예측 (Vibration Prediction in Mill Process by Using Neural Network)

  • 이신영
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.272-277
    • /
    • 2003
  • In order to predict vibration during end-milling process, the cutting dynamics was modelled by using neural network and combined with structural dynamics by considering dynamic cutting states. Specific cutting constants of the cutting dynamics model were obtained by averaging cutting forces and tool diameter, cutting speed, feed, axial depth radial depth were considered as machining factors. Cutting farces by test and by neural network simulation were compared and the vibration during end-milling was simulated.

  • PDF

Cutting Simulation을 이용한 End-milling Cutter의 모델링 및 제작에 관한 연구 (End-mill Modeling and Manufacturing Methodology via Cutting Simulation)

  • 김재현;김종한;고태조;박정환
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.151-159
    • /
    • 2006
  • This paper describes a design process of end-milling cutters: solid model of the designed cutter is constructed along with computation of cutter geometry, and the wheel geometry as well as wheel positioning data f3r fabricating end-mills with required cutter geometry is calculated. In the process, the main idea is to use the cutting simulation method by which the machined shape of an end-milling cutter is obtained via Boolean operation between a given grinding wheel and a cylindrical workpiece (raw stock). Major design parameters of a cutter such as rake angle, inner radius can be verified by interrogating the section profile of its solid model. We studied relations between various dimensional parameters and proposed an iterative approach to obtain the required geometry of a grinding wheel and the CL data for machining an end-milling cutter satisfying the design parameters. This research has been implemented on a commercial CAD system by use of the API function programming, and is currently used by a tool maker in Korea. It can eliminate producing a physical prototype during the design stage, and it can be used for virtual cutting test and analysis as well.

절삭실험을 이용한 저합금강의 유동응력 결정 및 검증 (Determination and Verification of Flow Stress of Low-alloy Steel Using Cutting Test)

  • 안광우;김동후;김태호;전언찬
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.50-56
    • /
    • 2014
  • A technique based on the finite element method (FEM) is used in the simulation of metal cutting process. This offers the advantages of the prediction of the cutting force, the stresses, the temperature, the tool wear, and optimization of the cutting condition, the tool shape and the residual stress of the surface. However, the accuracy and reliability of prediction depend on the flow stress of the workpiece. There are various models which describe the relationship between the flow stress and the strain. The Johnson-Cook model is a well-known material model capable of doing this. Low-alloy steel is developed for a dry storage container for used nuclear fuel. Related to this, a process analysis of the plastic machining capability is necessary. For a plastic processing analysis of machining or forging, there are five parameters that must be input into the Johnson-Cook model in this paper. These are (1) the determination of the strain-hardening modulus and the strain hardening exponent through a room-temperature tensile test, (2) the determination of the thermal softening exponent through a high-temperature tensile test, (3) the determination of the cutting forces through an orthogonal cutting test at various cutting speeds, (4) the determination of the strain-rate hardening modulus comparing the orthogonal cutting test results with FEM results. (5) Finally, to validate the Johnson-Cook material parameters, a comparison of the room-temperature tensile test result with a quasi-static simulation using LS-Dyna is necessary.

DEVELOPMENT OF A VIRTUAL MACHINING SYSTEM FOR ESTIMATION OF CUTTING PERFORMANCE

  • Ko, Jeong-Hoon;Cho, Dong-Woo;Yun, Won-Soo
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
    • /
    • pp.288-294
    • /
    • 2001
  • Present CAM technology cannot provide important physical property such as cutting farce and machined surface. Thus, the selection of cutting conditions still depends on the experience of an expert or on the machining data handbook in spite of the developed CAM technology. This paper presents an advanced methodology to help the worker to determine optimum cutting condition for CHC machining that excludes the need for expertise of machining data handbook. The virtual machining system presented in this paper can simulate the real machining states such as cutting farce and machined surface error. And virtual machining system can schedule feed rate to adjust the cutting force to the reference force.

  • PDF

볼-엔드 밀링가공시 절삭력의 시뮬레이션에 관한 연구 (A Study on the Cutting Force Simulation for Ball-end Milling Operation)

  • 홍민성;김종민
    • 한국공작기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.84-91
    • /
    • 2003
  • In metal cutting operation, it is very important that predict cutting force and work surface. Vibration is an unstable cutting phenomenon which is due to the interaction of the dynamics of the chip removal process and the structural dynamics of machine tool. When vibration on, it reduces tool life, results in poor surface roughness and low productivity of the machining process. In this study, the experiments were conducted in machining center without cutting fluid to investigate the phenomenon of vibration. In the experiments, accelerometers were set up at the tail stock and tool holder and signals were picked up. Surface roughness profiles are generated under the ideal condition and the occurrence of vibration based on the surface shaping simulation model.

밀링가공시 절삭력의 시뮬레이션에 관한 연구 (A Study on the Cutting Force Simulation for Ball-end milling Operation)

  • 홍민성;김종민
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.184-189
    • /
    • 2003
  • In metal cutting operation, it is very important that predict cutting force and work surface. Vibration is an unstable cutting phenomenon which is due to the interaction of the dynamics of the chip removal process and the structural dynamics of machine tool. when Vibration occurs, it reduces tool life, results in poor surface roughness and low productivity of the machining process. In this study, the experiments were conducted in machining center without cutting fluid to investigated phenomenon of the Vibration. In the experiments, accelerometers were set up at the tail stock and tool holder and the signals were picked up. In this paper, surface roughness profiles will be generated under the ideal condition and the occurrence of the vibration based on the surface shaping simulation model.

  • PDF

산업용 철강재 절단토치용 노즐 개발 및 적용에 관한 연구 (Development of NG Fueled Steel Cutting Torch for Industrial Application)

  • 이현찬;유현석;이중성
    • 한국가스학회지
    • /
    • 제8권1호
    • /
    • pp.25-29
    • /
    • 2004
  • 본 연구는 연료특성상 기존의 절단공정에 사용되던 에틸렌, 아세틸렌, LPG에 비해 불리한 천연가스를 절단분야에 적용하기 위해 천연가스용으로 개발된 절단노즐을 수치해석을 통해 해석하고, 수치해석 결과를 바탕으로 현장적용 실험을 수행하여 절단성능 및 적용 여부를 판단코자 하였다.

  • PDF

압축냉각공기를 이용한 선삭가공시 냉각효과 해석 (Analysis of Cooling Effect Using Compressed Cold Air in Turing Process)

  • 곽승용;김동길;이종항;이상조
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.1007-1013
    • /
    • 2003
  • As environmental restriction kas continuously become more strict, machining technology has emphasized on development of environment-friendly technology. In cutting technology, it has been well recognized that cutting fluids might have undesirable effects on workers health and working environment. In this study, compressed cold air was used as a replacement for conventional cutting fluids. The cooling effect on cutting tool was analyzed using the finite element method and the computational fluid dynamics. This study focused on the temperature simulation of cutting tool by real flow analysis of cold air. The maximum flow rate and the minimum temperature of compressed cold air are 300ι/min and -30$^{\circ}C$ respectively. To compare the simulation and experimental results, inner temperature of the cutting tool was measured with the thermocouple embedded in the insert. The results show that the analysis of cutting temperature using FEM and CFD is resonable, and the replacement of cutting fluid with cold air is available.

ME Z-map 모델을 이용한 NC 가공의 절삭력 예측 (Cutting Force Prediction in NC Machining Using a ME Z-map Model)

  • 이한울;고정훈;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.86-89
    • /
    • 2002
  • In NC machining, the ability to automatically generate an optimal process plan is an essential step toward achieving automation, higher productivity, and better accuracy. For this ability, a system that is capable of simulating the actual machining process has to be designed. In this paper, a milling process simulation system for the general NC machining was presented. The system needs first to accurately compute the cutting configuration. ME Z-map(Moving Edge node Z-map) was developed to reduce the entry/exit angle calculation error in cutting force prediction. It was shorn to drastically improve the conventional Z-map model. Experimental results applied to the pocket machining show the accuracy of the milling process simulation system.

  • PDF

다중 적층 금속의 선삭가공에 대한 FEM 해석 (FEM Analysis of Turning Multi-layer Metal)

  • 김기선
    • 한국기계가공학회지
    • /
    • 제10권4호
    • /
    • pp.57-63
    • /
    • 2011
  • The aim of this study is to analyze turning process using commercial FEM simulation code. Various simulation models of orthogonal cutting process for 3 layers of metallic material have been simulated and analyzed. The workpiece material used for the orthogonal plane-strain metal cutting simulation consists of three layers, which are Allow Tool Steel, Aluminum and Stainless Steel. The finite element model is composed of a deformable workpiece and a rigid tool. The tool penetrates through the workpiece at a constant speed and constant feed rate. As an analytical result, detailed cutting temperature, strain, pressure, residual stress for both a tool and each layer of workpiece were obtained during the turning process. It has been closely observed that the chip flow curve deforms continuously.