• 제목/요약/키워드: Cutting-Simulation

검색결과 463건 처리시간 0.03초

가상 공작기계의 연구 개방 - Part 1 (절삭력 모델, 가공 표면 오차 모델 및 이송 속도 스케줄링 모델) (Development of a Virtual Machine Tool - Part 1 (Cutting Force Model, Machined Surface Error Model and Feed Rate Scheduling Model))

  • 윤원수;고정훈;조동우
    • 한국정밀공학회지
    • /
    • 제18권11호
    • /
    • pp.74-79
    • /
    • 2001
  • In this two-part paper, a virtual machine tool (VMT) is presented. In part 1, the analytical foundation of a virtual machining system, envisioned as the foundation for a comprehensive simulation environment capable of predicting the outcome of cutting processes, is developed. The VMT system purposes to experience the pseudo-real machining before real cutting with a CNC machine tool, to provide the proper cutting conditions for process planners, and to compensate or control the machining process in terms of the productivity and attributes of products. The attributes can be characterized with the machined surface error, dimensional accuracy, roughness, integrity and so forth. The main components of the VMT are cutting process, application, thermal behavior and feed drive modules. In part 1, the cutting process module is presented. The proposed models were verified experimentally and gave significantly better prediction results than any other method. The thermal behavior and feed drive modules are developed in part 2 paper. The developed models are integrated as a comprehensive software environment in part 2 paper.

  • PDF

Factory simulation based on shipbuilding CIM

  • Nomoto, Toshiharu
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1998년도 특별강연 및 추계학술발표 개요집
    • /
    • pp.3-8
    • /
    • 1998
  • This paper considers factory simulation based on shipbuilding CIM in which a computer integrated design and manufacturing system is considered. The author proposes the product model and several alterative functions for designing ship's structure, and develop a ship definition system for computer integrated design and manufacturing. This implemented system is called SODAS (System Of Design and Assembly for Shipbuilding). Object oriented concept is used to develop this system. As well as the product model, the design function cutting function, and virtual assembling function are introduced. By using the design function, any type of ship's structure can be designed. And also factory simulation can be carried out by using the cutting function and virtual assembling function.

  • PDF

Quadtree를 이용한 절삭 영역 탐색 기법에 관한 연구 (Research of Searching Algorithm for Cutting Region using Quadtree)

  • 김용현;고성림;이상규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.873-876
    • /
    • 2003
  • Z-map model is the most widely used model for NC simulation and verification. But it has several limitations to get a high precision, to apply 5 axis machining simulation. In this paper, we tried to use quadtree for searching cutting region. Quadtree representation of two dimensional objects is performed with a tree that describes the recursive subdivision. By using these quadtree model. storage requirements were reduced. And also, recursive subdivision was processed in the boundries, so, useless computation could be reduced, too. To get more high Accuracy, we applied the supersampling method in the boundaries. The Supersampling method is the most common form of the antialiasing and usually used with polygon mesh rendering in computer graphics To verify quadtree model we compared simulated results with z-map model and enhanced z-map model

  • PDF

금형의 자동 계측시스템을 위한 측정 모듈설계 및 시뮬레이션 소프트웨어 개발 (Development of Simulation Software and Design of Measuring Modules for Automatic Measuring System of Moulds)

  • 김옥삼;구본권
    • 한국공작기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.71-77
    • /
    • 2001
  • On-machine measuring system of Numerically Control(NC) machines permit computer control of basic material cutting processes of moulds. A part of mould designed within a CAD/CAM system can be manufactured by generation of tool paths by the measuring systems. Since the three-dimensional geometry by AutoCAD of the part is contained in the data base, the manufacturing specialist combined with the appropriate software simulation, can not only create the commands to drive the virtual measuring and standardization of measuring modules but also can check for mistakes by viewing the computer graphics simulation of the tool cutting sequence.

  • PDF

직접형상제어를 위한 공구경로의 보상 : 2D 윤곽가공의 공구휨을 중심으로 (Path compensation toward direct shape control: dealing with tool deflection problem in 2D contour machining)

  • 조정훈;서석환
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.97-111
    • /
    • 1995
  • In this paper, we investigate path compensation scheme for the machining errors due to tool deflection in 2D contour machining. The significance of the deflection error is first shown by experiments, and a direct compensation scheme is sought. In the presented scheme, the tool path is evaluated and correcte based on the instantaneous deflection force model, until the desired contour can be obtained under the presence of tool deflection in actual machining. In the sense that the developed method estimates and compensates the machining errors via modifying the tool path, it is distinguished from the previous approach based on geometric simulation and cutting simulation. Further, it can be viewed as a direct and active method toward direct shape control in CNC machining. Simulation results are included to show the validity and adequacy of the path-modification scheme under various cutting conditions.

  • PDF

디지털 매뉴팩쳐링 기법을 이용한 절단기기의 검증된 가상 NC 시뮬레이터 구축 (Construction of a Verified Virtual NC Simulator for the Cutting Machines at Shipyard Using the Digital Manufacturing Technology)

  • 정호림;임현준;이장현;최양렬;김호구;신종계
    • 대한조선학회논문집
    • /
    • 제42권1호
    • /
    • pp.64-72
    • /
    • 2005
  • Digital manufacturing is a technology to simulate the real manufacturing process using the virtual model representing the physical schema and the behavior of the real manufacturing system including resources, processes and product information. Therefore, it can optimize the manufacturing system or prevent the bottleneck processes through the simulation before the manufacturing plan is executed. This study presents a method to apply the digital manufacturing technology for the steel cutting process in shipyard. The system modeling of cutting shop is carried out using the IDEF and UML which is a visual modeling language to document the artifacts of a complex system. Also, virtual NC simulators of the cutting machines are constructed to emulate the real operation of cutting machines and NC codes. The simulators are able to verify the cutting shape and estimate the precise cycle time of the planned NC codes. The validity of the virtual model is checked by comparing the real cutting time and shape with the simulated results. It is expected that the virtual NC simulators can be used for accurate estimation of the cutting time and shape in advance of real cutting work.

선삭 공정에서의 고능률 가공을 위한 주축 회전수의 최적화 (Spindle Speed Optimization for High-Efficiency Machining in Turning Process)

  • 조재완;강유구;김석일
    • 한국정밀공학회지
    • /
    • 제26권1호
    • /
    • pp.138-145
    • /
    • 2009
  • High-efficiency and high-quality machining has become a fact of life for numerous machine shops in recent years. And high-efficiency machining is the most significant tool to enhance productivity. In this study, to achieve high-efficiency machining in turning process, a spindle speed optimization method was proposed based on a cutting power model. The cutting force and power were estimated from the cutting parameters such as specific cutting force, feed, depth of cut, and spindle speed. The time delay due to the acceleration or deceleration of spindle was considered to predict a more accurate machining time. Especially, the good agreement between the predicted and measured cutting forces showed the reliability of the proposed optimization method, and the effectiveness of the proposed optimization method was demonstrated through the simulation results associated with the productivity enhancement in turning process

로봇을 이용한 두개골 천공 시스템의 공구 경로 생성 (Tool-path Generation for a Robotic Skull Drilling System)

  • 정연찬
    • 한국CDE학회논문집
    • /
    • 제18권4호
    • /
    • pp.243-249
    • /
    • 2013
  • This paper presents a tool-path generation methods for an automated robotic system for skull drilling, which is performed to access to some neurosurgical interventions. The path controls of the robotic system are classified as move, probe, cut, and poke motions. The four motions are the basic motion elements of the tool-paths to make a hole on a skull. Probing, rough cutting and fine cutting paths are generated for skull drilling. For the rough cutting path circular paths are projected on the offset surfaces of the outer top and the inner bottom surfaces of the skull. The projected paths become the paths on the top and bottom layers of the rough cutting paths. The two projected paths are blended for the paths on the other layers. Syntax of the motion commands for a file format is also suggested for the tool-paths. Implementation and simulation results show that the possibility of the proposed methods.

자유곡면을 가공하는 공작기계 체적오차의 일반화 해석 (A Generalized Analysis of Volumetric Error of a Machine Tool Machining a Sculpture)

  • 고태조
    • 한국생산제조학회지
    • /
    • 제4권3호
    • /
    • pp.39-47
    • /
    • 1995
  • This paper suggests generalize mathematica mode for the benefit of volumetric error analysis of a multi-axis machine tool machining a sculptured surfaces. The volumetric error, in this paper, is defined as a three dimensional error at the cutting point, which is caused by the geometric errors and the kinematic errors of each axis and alignment errors of the cutting tool. The actual cutting position is analyzed based on the form shaping model including a geometric error of the moving carriage, where a form shaping model is derived from the homogeneous transformation matrix. Then the volumetric error is obtained by calculating the position difference between the actual cutting position and the ideal one calculated from a Nonuniform Rational B-Spline named as NURES. The simulation study shows the effectiveness for predicting the behavior of machining error and for the method of error compensation.

  • PDF

기계부품용 금속구 제조공정의 성형롤러 개발에 관한 연구 (A Study on Development of Forming Roller for Metal Ball Manufacturing Process for Machine Parts)

  • 조호성;박치근;박종순;김영호;박철우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1686-1690
    • /
    • 2005
  • Although metal ball can be used as parts of bearing or metal filter, that is used by single product with solder ball or shot ball. Also, according as demand of metal ball of various diameter increase, processing property 솜 extension of coverage are important. Especially an optimal design of cutting roller was investigated for determining appropriate dimensions of components of manufacturing system. In this study, the effects of the diameter and the round radius of cutting roller were calculated and analyzed. We applied data of rigid-plastic FEM Simulation in basis design of equipment to solve these issues, and confirmed processing factor about metal ball manufacturing process that use cutting process of metal wire in this research

  • PDF