• Title/Summary/Keyword: Cutting-Simulation

Search Result 463, Processing Time 0.028 seconds

An innovative CAD-based simulation of ball-end milling in microscale

  • Vakondios, Dimitrios G.;Kyratsis, Panagiotis
    • Advances in Computational Design
    • /
    • v.5 no.1
    • /
    • pp.13-34
    • /
    • 2020
  • As small size and complex metal machining components demand increases, cutting processes in microscale become necessary. Ball-end milling is a commonly used finishing process, which nowadays can be applied in the microscale size. Surface quality and dimensional accuracy are two basic parameters that affect small size components in their assembly and functionality. Thus, good quality can be achieved by optimizing the cutting conditions of the procedure. This study presents a 3D simulation model of ball-end milling in microscale developed in a commercial CAD software and its optical and computing results. These carried out results are resumed to surface topomorphy, surface roughness, chip geometry and cutting forces calculations that arising during the cutting process. A great number of simulations were performed in a milling machine centre, applying the discretized kinematics of the procedure and the final results were compared with measurements of Al7075-T651 experiments.

A study on the 3-D CNC cutting planning and simulation by Z-Map model (Z-Map모델을 이용한 3차원 CNC가공계획 및 절삭시뮬레이션에 관한 연구)

  • Song, Soo-Yong;Kim, Seok-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.115-121
    • /
    • 1996
  • Recently, the Z-Map model has been used widely to represent the three dimensional geometric shape and to achieve the cross-section and point evaluation of the shape. In this paper, the CNC cutting planning and simulation modules for product with three dimensional geometric shape are realized based on the Z-Map model. The realized system has the various capabilities related to the automatic generation of tool path for the rough and finish cutting processes, the automatic elimination of overcut, the automatic generation of CNC program for a machining center and the cutting simulation. Especially, the overcut-free tool path is obtained by using the CL Z-Map models which are composed of the offset surfaces of the geometric shape of product.

  • PDF

A Study on Development of 3-D Simulator for H-Beam Robot Cutting and Optimization of Cutting Using the Simulator (H-beam 로봇 절단용 3차원 시뮬레이터의 개발과 이를 이용한 절단 최적화에 관한 연구)

  • Park, Ju-Yong;Kim, Yong-Uk
    • Journal of Welding and Joining
    • /
    • v.30 no.4
    • /
    • pp.44-48
    • /
    • 2012
  • H-beam used for stiffening the upper structure of ocean plant is cut in the various shapes. The cutting process of the H-beam is done manually and requires a long time and high cost. Therefore, automation of H-beam cutting is an important task. This research aims to develop a 3-D simulator to build the automatic H-beam cutting system and to determine the optimal cutting method. The automatic H-beam cutting system composes of 6 robots including 2 cutting robots hang to a crane and 1 conveyer. The appropriate system layout for covering the various sizes and types of H-beam was tested and determined using the simulator. The H-beam cutting system uses a hybrid type of plasma and gas cutting because of special cutting shapes of H-beam. The cutting area of each cutting method should be properly divided according to the size and shape of H-beam to shorten the total cutting time. Additionally the collision between a robot and a robot or a robot and H-beam should be avoided. The optimal cutting method for the shortest cutting time without the collision could be found for the various cutting conditions by use of the simulator. 2 simulation samples shows the availability of the simulator to find the optimal cutting method.

Non-parametric Modeling of Cutter Swept Surfaces for Cutting Simulation (모의가공을 위한 공구 이동 궤적면의 비매개변수형 모델링)

  • 정연찬;최병규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.45-55
    • /
    • 1996
  • This paper presents a new approach to non-parametric modeling of cutter swept surface (CSS) for cutting simulation. Instead of explicitly modeling cutter swept volumes, silhouette curves of the cutter surface are utilized in computing the z-value of the CSS at a grid point on the x,y-plane. The non-parametric evaluation of the CSS constitutes the integral part of 3-axis cutting simulation. The proposed method is more efficient than the existing ones in the case of conventional cutters (i.e., ball-end mills and flat-end mills), and more importantly, it enables the non-parametric modeling of the CSS for the round-end mills which was not possible with the existing methods.

  • PDF

Cutting Simulation of Mold & Die via Hybrid Model of DVM and Z-Map (DVM 및 Z-Map 복합모델을 이용한 금형의 모의가공)

  • 신양호;박정환;정연찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.47-56
    • /
    • 2003
  • Geometric cutting-simulation and verification play an important role in detecting NC machining errors in mold & die manufacturing and thereby reducing correcting time & cost on the shop floor. Current researches in the area may be categorized into view-based, solid-based, and discrete vector-based methods mainly depending on workpiece models. Each methodology has its own strengths and weaknesses in terms of computing speed, representation accuracy, and its ability of numerical inspection. The paper proposes a hybrid modeling scheme for workpiece representation with z-map model and discrete vector model, which performs 3-axis and 5-axis cutting-simulation via tool swept surface construction by connecting a sequence of silhouette curves.

Analysis on the Precision Machining in End Milling Operation by Simulating Surface Generation (엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.229-236
    • /
    • 1999
  • The surface, generated by end milling operation, is deteriorated by tool runout, vibration, tool wear and tool deflection, etc. Among them, the effect of tool deflection on surface accuracy is analyzed. Surface generation model for the prediction of the topography of machined srufaces has been developed based on cutting mechanism and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool due to cutting force. For the more accurate prediction of cutting force, flexible end mill model is used to simulate cutting process. Computer simulation has shown the feasibility of the surface generation system. Using developed simulation system, the relations between the shape of end mill and cutting conditions are analyzed.

  • PDF

Generation of Effective Cutting Conditions for Machining Safety in a Manufacturing Industry

  • Seo, Ji-Han;Park, Byoung-Tae
    • International Journal of Safety
    • /
    • v.5 no.2
    • /
    • pp.34-37
    • /
    • 2006
  • As part of an effort to systematize the operation planning for cutting processes, the neural network method has been applied to model the process of selecting cutting conditions and subsequently to arrive at effective and safe cutting conditions through learning during training of the model. New cutting conditions that are more effective and safer for the given circumstance are obtained. The proposed algorithm deletes the old information previously learned, and then makes the network make at improvement by learning. As a result, the new algorithm provides useful cutting conditions for safer manufacturing environments. A variety of simulation cases illustrate the performance of the proposed methodology. The simulation results are provided and discussed.

Vibration Prediction in Milling Process by Using Neural Network (신경회로망을 이용한 밀링 공정의 진동 예측)

  • 이신영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.1-7
    • /
    • 2003
  • In order to predict vibrations occurred during end-milling processes, the cutting dynamics was modelled by using neural network and combined with structural dynamics by considering dynamic cutting state. Specific cutting force constants of the cutting dynamics model were obtained by averaging cutting forces. Tool diameter, cutting speed, fled, axial and radial depth of cut were considered as machining factors in neural network model of cutting dynamics. Cutting farces by test and by neural network simulation were compared and the vibration displacement during end-milling was simulated.

Reliability verification of cutting force experiment by the 3D-FEM analysis from reverse engineering design of milling tool (밀링 공구의 역 공학 설계에서 3D 유한요소 해석을 통한 절삭력 실험의 신뢰성 검증)

  • Jung, Sung-Taek;Wi, Eun-Chan;Kim, Hyun-Jeong;Song, Ki-Hyeok;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.54-59
    • /
    • 2019
  • CNC(Computer Numerical Control) machine tools are being used in various industrial fields such as aircraft and automobiles. The machining conditions used in the mold industry are used, and the simulation and the experiment are compared. The tool used in the experiment was carried out to increase the reliability of the simulation of the cutting machining. The program used in the 3D-FEM (finite element method) was the AdvantEdge and predicted by down-milling. The tool model is used 3D-FEM simulation by using the cutting force, temperature prediction. In this study, we carried out the verification of cutting force by using a 3-axis tool dynamometer (Kistler 9257B) system when machining the plastic mold Steel machining of NAK-80. The cutting force experiment data using on the charge amplifier (5070A) is amplified, and the 3-axis cutting force data are saved as a TDMS file using the Lab-View based program using on NI-PXIe-1062Q. The machining condition 7 was the most similar to the simulation and the experimental results. The material properties of the NAK-80 material and the simulation trends reflected in the reverse design of the tool were derived similarly to the experimental results.