• 제목/요약/키워드: Cutting shop

검색결과 38건 처리시간 0.025초

환경 친화적 기계가공 기술에 관한 연구 선삭가공시 회전분리기구에 의한 절삭유 미립화와 환경영향(II) (A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in fuming Operation(II))

  • 황준;정의식;황덕철
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.50-57
    • /
    • 2003
  • This paper presents the experimental results to verify the atomization characteristics and environmental impact of cutting fluid. Even though cutting fluid improves the productivity through the cooling, Lubricating effects, environmental impact due to cutting fluid usage is also increased on factory shop floor Cutting fluid's aerosol via atomization process can be affected human health risk such as lung cancer and skin diseases. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near working tone under typical operational conditions. The aerosol concentration also exceeds NIOSH regulations. This research can be provided a basis of environmental impact analysis fur environmental consciousness.

환경친화적 기계가공을 위한 전략적 접근 (A Strategic Approach for Environmental Conscious Machining)

  • 황준;정의식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.847-850
    • /
    • 1997
  • This paper presents a strategy to develop the environmentally conscious machining process. To establish the knowledge the analytical and experimental methodology for he prediction of aerosol concentration due to cutting fluid atomization mechanism in machining operation. The established analytical model which is based on atomization theory analyzes the cutting fluid motion and aerosol generation in machining process. The impinging and evaporation experiments were performance to know the particle size ad evaporation rate of cutting fluid. The predictive models can be used as a basis for environmental impact analysis on the shop floor. It can be also facilitate the optimization of cutting fluid usage in achieving a balanced consideration of productivity and environmental consciousness.

  • PDF

다축 절삭가공용으로의 육관절 산업용 로봇의 적용평가 (Application Estimate of 6 Degree of Freedom Industrial Robot for Multi-Axes Cutting Machine)

  • 정선환;최성대;권현규;최은환
    • 한국기계가공학회지
    • /
    • 제2권4호
    • /
    • pp.33-39
    • /
    • 2003
  • The stiffness of multi-articulated industrial robots is very weak, because their structure is an articulated type with some links and joints. Thus it is known that cutting processes for metals are not accepted in machine shop well, but they have a lot of merits for cutting processes, for example, drilling, tapping, and engraving etc, because of the characteristics of their high degree of freedom. The temptation of cutting aluminium was carried out to investigate the feasibility and the limitations or constraints for cutting metals on them. First the mode shapes of 6 degree of freedom welding robot were taken and analysed, and next the cutting processes were practically carried out on it. The results of study were found out to show the feasibility of cutting processes at drilling under 6mm of tool diameter, as well as to have some limitations and constraints, for examples, feed rate, depth of cut and cutting force etc.

  • PDF

기계가공시 공구수명과 절삭유 미립화에 따른 환경적 측면에 관한 연구 (The Effect of Tool Wear and Environmental Consciousness due to Cutting Fluid Atomization in Machining Process)

  • 황준;정의식;홍기배;성노철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.854-857
    • /
    • 2000
  • This paper presents the experimental results of relationship between the machinability and environmental consciousness due to cutting fluid atomization in machining process. Even though cutting fluid improves the machined part quality through the cooling and lubracating effects, its environmental impact is also increased according to the cutting fluid usage. Cutting tool wear is one of criterion for deciding the machinability. A few turning operations were performed to know the qualitative effectiveness of cutting fluid to tool wear improvement. This research can be used as a basis for environmental impact analysis on the shop floor. It can be also facilitate the optimization of cutting fluid usage in achieving a balanced consideration of productivity and environmental consciousness.

  • PDF

DVM 및 Z-Map 복합모델을 이용한 금형의 모의가공 (Cutting Simulation of Mold & Die via Hybrid Model of DVM and Z-Map)

  • 신양호;박정환;정연찬
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.47-56
    • /
    • 2003
  • Geometric cutting-simulation and verification play an important role in detecting NC machining errors in mold & die manufacturing and thereby reducing correcting time & cost on the shop floor. Current researches in the area may be categorized into view-based, solid-based, and discrete vector-based methods mainly depending on workpiece models. Each methodology has its own strengths and weaknesses in terms of computing speed, representation accuracy, and its ability of numerical inspection. The paper proposes a hybrid modeling scheme for workpiece representation with z-map model and discrete vector model, which performs 3-axis and 5-axis cutting-simulation via tool swept surface construction by connecting a sequence of silhouette curves.

다구찌 실험 계획법을 이용한 고속가공에서 공구수명 조건의 최적화 (Optimal Cutting Condition of Tool Life in the High Speed Machining by Taguchi Design of Experiments)

  • 임표;양균의
    • 한국기계가공학회지
    • /
    • 제5권4호
    • /
    • pp.59-64
    • /
    • 2006
  • High Speed Machining(HSM) reduces machining time and improves surface accuracy because of the high cutting speed and feedrate. Development of HSM makes it allowable to machine difficult-to-cut material and use small-size-endmill. It is however limited to cutting condition and tool material. In the machining operation, it is important to check main parameter of tool life and select optimal cutting condition because tool breakage can interrupt progression of operation. In this study, cutting parameters are determined to 3 factors and 3 levels which are a spindle speed, a feedrate and a width of cut. Experiment is designed to orthogonal array table for L9 with 3 outer array using Taguchi method. Also, it is proposed to inspect significance of the optimal factors and levels by ANOVA using average of SN ratio for tool life. Finally, estimated value of SN ratio in the optimal cutting condition is compared with measured one in the floor shop and reduction of loss is predicted.

  • PDF

Environmentally-Conscious Lubrication for Superfinishing

  • Malkin, Stephen;Lee, Jongchan;Masurkar, Sameer;Hickok, Evan
    • 한국기계가공학회지
    • /
    • 제2권1호
    • /
    • pp.5-14
    • /
    • 2003
  • Cutting fluids used for superfinishing are usually mineral based oils With sulfur and chlorine additives. These cutting fluids are an environmental hazard and can adversely affect the health of personnel on the shop floor. The present investigation was undertaken to explore the possible alternative use of environmentally-conscious cutting fluids for superfinishing. Unlike mineral oils, these environmentally-conscious cutting fluids are biodegradable and non-hazardous. Experiments were conducted for testing an ester oil manufactured by Accu-Lube applied in miniscule amounts using the Minimum Quantity Lubrication (MQL) technique. A significant improvement in stock removal was found with the 6 stones tested. The specific energy values associated with the process were also significantly lower than those obtained previously with conventional straight oils and the water based synthetic fluid, indicative of better lubrication, while the surface roughness was comparable. These tests prove that MQL with ester oils can be a very effective environmentally-conscious alternative to conventional straight oils.

  • PDF

반도체 웨이퍼 다이싱 공정을 위한 생산시점 정보관리시스템 (A Point of Production System for Semiconductor Wafer Dicing Process)

  • 김인호
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권10호
    • /
    • pp.55-61
    • /
    • 2009
  • 본 연구는 웨이퍼 다이싱 공정의 가공정보들을 수집하여 실시간으로 관리하는 생산시점의 정보관리시스템에 대한 연구이다. 개발한 시스템은 POP용 단말기, 라인 컨트롤러 및 네트웍으로 구성된다. LAN은 상위관리시스템을 연결하며, RS485 네트웍은 하위시스템인 라인 컨트롤러와 단말기를 연결한다. 라인 컨트롤러는 POP 단말기와 서버를 연결하기 위해 사용된다. 웨이퍼의 실시간 가공정보는 기계, 제품, 작업자의 정보발생원들로부터 얻고, 이들은 최적절삭조건을 계산하기 위하여 사용된다. 수집된 정보는 절삭속도, 순수의 여부, 처리 중인 블레이드의 누적 절삭량 및 불량 웨이퍼의 수이다. 상위시스템의 생산계획정보는 웨이퍼 가공공정의 관리를 위해서 현장에 전달되며, 생산결과정보는 현장에서 수집하여 서버로 전달되고 필요한 형태로 정보가 가공되어 공정관리용 정보로 사용된다. 개발한 시스템을 반도체 웨이퍼 가공공정에 적용한 결과, 생산진전상태, 각 기계에 대한 작업시간 및 비작업시간의 해석 및 웨이퍼 불량률의 해석이 가능하며, 이들은 다이싱 공정의 품질 및 생산성 향상을 위한 생산공정 관리정보로 활용할 수 있을 것이다.

디지털 조선소 구축을 위한 물류 모델 프레임워크 (A framework of Plant Simulation for a Construction of a Digital Shipyard)

  • 우종훈;이광국;정호림;권영대;신종계
    • 대한조선학회논문집
    • /
    • 제42권2호
    • /
    • pp.165-174
    • /
    • 2005
  • Recently, world leading companies on manufacturing field are trying to adopt a PLM methodology, which is a new production paradigm, for a survival and strengthening the competitiveness. Some projects for a digital shipyard including a methodology of a digital simulation framework are going on by Seoul national university and Samsung heavy industry. A Database methodology for a scheduling data, an interfacing methodology for a simulation input and output, and a synchronized simulation related methodology are required for enhancing the value of the digital simulation for shipbuilding. In this paper, such a methodologies and a related case study for a fabrication factory and an assembly factory are presented.

곡면 Fitting을 이용한 고속가공 표면거칠기의 최소화 (Minimization of Surface Roughness for High Speed Machining by Surface Fitting)

  • 정종윤;조혜영;이춘만;문덕희
    • 산업경영시스템학회지
    • /
    • 제27권2호
    • /
    • pp.37-43
    • /
    • 2004
  • High speed machining is a machining process which cuts materials with the fast movement and rotation of a spindle in a machine tool. It reduces machining time because of the high feed and the high speed of a spindle. In addition it gets rid of post processes for high precision machining. When the high speed machining is applied to especially hardened steel, operators should select the proper parameters of machining. This can produce machining surfaces which is qualified with good surface roughness. This paper presents a method for selecting machining parameters to minimize surface roughness with high speed machining in cutting the hardened steels. Experimental data for surface roughness are collected in a machining shop based on the cutting feed and the spindle rotation. The data fits in hi-cubic polynomial surface of mathematical form. From the model this research minimize the surface roughness to find the optimal values of the feed and the spindle speed. This paper presents a program which automatically generates optimal solutions from the raw data of experiments.