• Title/Summary/Keyword: Cutting shape accuracy

Search Result 92, Processing Time 0.022 seconds

Process Analysis of Elbow-shaped Tubes using a Mandrel (맨드렐을 이용한 엘보우 성형 공정해석)

  • Oh, I.Y.;Park, S.H.;Park, J.Y.;Lee, S.H.;Lee, E.Y.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.11-17
    • /
    • 2017
  • In this study, process analysis of elbow-shaped tubes using a mandrel has been performed. To reach the final shape within the dimensional tolerance, the process analysis has been performed at various processing parameters such as tube dimensions, the curved cutting surface and the radius of curvature. The area outside the boundary of the target shape was expressed as a quantitative index to analyze the formability. The validation experiments have also been performed in order to increase the reliability of the process analysis. For the processing of elbow-shaped tubes, it is preferable to make the angle of the portion where the punch touches the tube smaller than the opposite angle. And the convex cutting surface is advantageous due to the increased contacts between the punch and the tube ends during the bending process. Elbow tube having larger radius of curvature shows higher dimensional accuracy due to the relatively uniform strain distribution.

A Study on Tool Path Generation for Machining Impellers with 5-Axis Machining Center (5축 Machining Center를 이용한 임펠러 가공을 위한 공구경로 생성에 관한 연구)

  • 장동규;조환영;이희관;공영식;양균의
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.83-90
    • /
    • 2004
  • This paper proposes a tool path generation method for machining impellers with 5-axis machining center. The shape of impeller is complex, being composed of pressure surface, suction surface and leading edge, and so on. The compound surface which is made of ruled surface such as pressure surface and suction surface and leading edge such as fillet surface, makes the tool path generation much complicated. To achieve efficient roughing, cutting area is divided into two region and then tool radius of maximum size that do not cause tool intereference is selected for shortening machining time. In finishing, accuracy is improved using side cutting for blade surface and point milling for leading edge.

Machining characteristic of gray cast iron in high speed machining with tungsten carbide endmill (초경 엔드밀에 의한 회주철(GC250)의 고속가공 특성(1))

    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.147-150
    • /
    • 1995
  • High speed machining one of the most effectiv to improve machining accuracy and product in dies and mould. But a study on this is limited to Alumium, light metal etc. This paper presents machining characteristic of gray cast iron in high speed machining with tungsten carbide endmill. It is suggested to measure sutting force, tool wear, surface roughness, surface shape and select of cptimal cutting condition in the high speed machining of gray cast iron. Performance of high speed machine tool was estimated and the relationship between cutting phenomenon and machinabillity was described.

  • PDF

A Study on the High Speed of Cutting Tool Feed System for the Noncircular Machining (비진원 가공용 공구 이송장치의 고속화 성능에 관한 연구)

  • 김성식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.96-103
    • /
    • 1998
  • With the advance of processing technology , so as to spare fuel, piston heads used in automobile reciprocating engine have complex 3-dimension, with respect to shape such as ovality, profile, eccentricity, offset, recess. Therefore, coming out of the existing process work used master cam. the process work is performed using a CNC lathe. For a precision processing, the processing work is need to make study of high speed feed gear synchronized with the rotative speed of main spindle. And then the high speed feeding system must maintain high dynamic stiffness, high speed and high positioning accuracy . In this paper, in order to achieve high speed cutting tool feeding. The linear brushless DC motor is used for satisfying this process work. The ball bush and turicite is used as the guidance of the feed gear system. Also linear encoders, digital servo amplifiers and controller are used for controlling driving motor. This paper presents the design and simulation of the new tool feed system for noncircular machining.

  • PDF

Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade (터빈블레이드의 5축 고속가공에서 최적가공경로의 선정)

  • Lim T. S.;Lee C. M.;Kim S. W.;Lee D. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.53-60
    • /
    • 2002
  • Recently, the development of aerospace and automobile industries brought new technological challenges, related to the growing complexity of products and new geometry models. High speed machining using 5-Axis milling machine is widely used for 3D sculptured surface parts. 5-axis milling of turbine blade generates the vibration, deflection and twisting caused from thin and cantilever shape. So, the surface roughness and the waviness of workpiece are not good. In this paper, The effects of cutter orientation and lead/tilt angle in 5-Axis high speed ball end-milling of turbine blade were investigated to improve the geometric accuracy and surface integrity. The experiments were performed at lead/tilt angle $15^{\circ}$ of workpiece with four cutter directions such as horizontal outward, horizontal inward, vertical outward, and vertical inward. Workpiece deflection, surface roughness and machined surface were measured with various cutter orientations such as cutting direction, and lead/tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle.

  • PDF

A Study on the Virtual Machining CAM System : Prediction and Experimental Verification of Machined Surface (실 가공형 CAM 시스템 연구: 가공형상의 예측 및 실험 검증)

  • 김형우;서석환;신창호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.961-964
    • /
    • 1995
  • For geometric accuracy in the net shape machining, the problem of tool deflection should be resolved in some fashion. In particular, this is crucial in finish cut operation where slim tools are used. The purpose of this paper is to verify the validity and effectiveness of the prediction model of the machined surface. Experimental results are presented for the cut of steel material with HSS endmill of diameter 6mm on machining center. The results shows that 1) the machining error due totool deflection is serious even in the low cutting load, 2) by using the mechanistic simulation model with experimental coefficients, the machining error was predicted with maximum prediction error of 10% which was significantly reduced to the desired level by the path modification method.

  • PDF

A Study on the Process Condition of Electropolishing for Stamping Leadframe (스탬핑 리드프레임의 전해 연마 가공조건에 관한 연구)

  • 신영의;김경섭;김헌의;류기원;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.983-988
    • /
    • 2000
  • The leadframe of thin plate fabricated by stamping method generates a lot of burr and stress in the processing surface because of the mold. The electropolishing equipment was produced in order to increase accuracy and surface roughness for 42%Ni-Fe leadframe. An electrolyte consisted of phosphoric acid, ethylene glycol and deionized water. Experiments were accomplished as polishing conditions were changed such as current density, polishing time, electrode gap and sample shape. The burr from the cutting was eliminated and surface characteristics of high flatness and high luster wre obtained after electropolishing. In addition, the electroplishing had good characteristic in 1.0 A current density and 4㎜ of electrode spaces, and it was affected by the composition of electrolyte and the sample shape.

  • PDF

A Study on Formed Tool to Machine Milli-structure Mold (미세구조물 금형가공을 위한 총형공구에 관한 연구)

  • Lee, Hi-Koan;Kim, Yeun-Sul;Kim, Do-Hyung;Roh, Sang-Heup;Yang, Gyun-Eui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.5-10
    • /
    • 2003
  • This paper presents the formed tool to machine a milli-structure mold. The formed tool is used to machine the geometrical shape of bearing rubber seal for precision machining. The bearing rubber seal has milli-sized complex geometry. Because it is difficult to machine the unique shape exactly by the conventional tool, the formed tool is used in machining die of the bearing seal. In this paper, it is performed to investigate properties of the formed tool; tool wear, cutting force and machined surface roughness. Tool wear increases rapidly with clearance angle Increase. Thus, the dimension accuracy is affected by the clearance angle.

  • PDF

The Identification of drilling chatter on the machining accuracy (Drill가공의 형상정도에 의한 Chatter발생 규명)

  • Park, Jong-Kweon;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.18-24
    • /
    • 1995
  • Drilling chatter is regenerative type self-excited vibration and can be predicted by the measurments of the dynamic compliance between tool and workpiece based on structural dynamics and cutting dynamics. This paper describes the theoretical prediction about drilling chatter and the mechanism of the formation of multi-coner shape in holes by drilling chatter. By the experiments and theoretical study, it is found that the odd number of multi-coner shape is always generated by drilling chatter.

  • PDF

Rapid Manufacturing of Microscale Thin-walled Structures by Phase Change Workholding Method (상변화 고정방식에 의한 마이크로 박벽 구조물의 쾌속제작)

  • Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.188-193
    • /
    • 2005
  • To provide the various machining materials with excellent quality and dimensional accuracy, high -speed machining is very useful tool as one of the most effective rapid manufacturing processes. However, high-speed machining is not suitable for microscale thin-walled structures because of the lack of the structure stiffness to resist the cutting force. A new method which is able to make a very thin-walled structure rapidly will be proposed in this paper. This method is composed two processes, high-speed machining and filling process. Strong workholding force comes out of the solidification of filling materials. Low-melting point metal alloys are used in order to minimize the thermal effect during phase change and to hold arbitrary shape thin-walled structures quickly during high-speed machining. To verify the usefulness of this method, we will show some applications, for examples thin -wall cylinders and hemispherical shells, and compare the experimental results to analyze the dimensional accuracy of typical parts of the structures.