• 제목/요약/키워드: Cutting shape accuracy

검색결과 92건 처리시간 0.127초

미세가공면의 상태 감시를 위한 다중신호특성에 관한 연구 (Multi-signal characteristics for condition monitoring of micro machined surface)

  • 장수훈;박진효;강익수;김정석
    • 한국기계가공학회지
    • /
    • 제8권1호
    • /
    • pp.31-36
    • /
    • 2009
  • Micro-machining technology has been adopted for shape accuracy of micrometer and sub-micrometer scale, surface roughness of tens nanometer in industries. In micro-machining process the quality of machined surface is derived from machining condition and tooling. This paper investigates AE(acoustic emission) and cutting force signals according to machined surface quality related to machining condition. Machined surface quality was analyzed by the AE and cutting force parameter which reflect surface morphology. The characteristics of signal were extracted for process optimization by monitoring both the tool condition and the machined surface texture in micro end milling process.

  • PDF

An Adaptive Slicing Algorithm for Profiled Edge laminae Tooling

  • Yoo, Seung-Ryeol;Walczyk, Daniel
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권3호
    • /
    • pp.64-70
    • /
    • 2007
  • Of all the rapid tooling (RT) methods currently available, thick-layer laminated tooling is the most suitable for large-scale, low-cost dies and molds. Currently, the determination of a lamina's contour or profile and the associated slicing algorithms are based on existing rapid prototyping (RP) data manipulation technology. This paper presents a new adaptive slicing algorithm developed exclusively for profiled edge laminae (PEL) tooling PEL tooling is a thick-layer RT technique that involves the assembly of an array of laminae, whose top edges are simultaneously profiled and beveled using a line-of-sight cutting method based on a CAD model of the intended tool surface. The cutting profiles are based on the intersection curve obtained directly from the CAD model to ensure geometrical accuracy. The slicing algorithm determines the lamina thicknesses that minimize the dimensional error using a new tool shape error index. At the same time, the algorithm considers the available lamination thicknesses and desired lamina interface locations. We demonstrate the new slicing algorithm by developing a simple industrial PEL tool based on a CAD part shape.

3D 프린팅시스템과 CAM시스템을 활용한 금형가공에 관한 연구 (Research on Die Machining using 3D Printing and CAM System)

  • 한규택
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.91-98
    • /
    • 2014
  • The purpose of this research is to investigate optimum machining conditions to improve the quality of die using the CAD/CAM system(Power Shape/Power Mill) and 3D printing. Surface roughness is widely used as an index for processing degree of accuracy. The Power Shape was used to model the shape of product. And the model shape is confirmed by 3D printing system(BFB-3000). Also, tool path and NC-codes were generated using Power Mill. Finally, the product was cut using CNC machine(NBS-2025). The cutting time and surface roughness were measured by measuring instrument. And then this process was repeated by changing the conditions to find optimal machining conditions. The surface roughness behavior with regard to specific factors were analyzed. Through this study, the optimal machining condition can be obtained.

자동차 실린더헤드 가이드 핀의 정밀도 향상을 위한 6날 리머에 관한 연구 (A Study on 6 Edges Reamer for the Improvement of Accuracy of Automotive Cylinder Head Guide Pin)

  • 김해지;김남경
    • 한국공작기계학회논문집
    • /
    • 제13권6호
    • /
    • pp.81-86
    • /
    • 2004
  • Generally, automotive cylinder head is manufactured by FCD45 material that is hard to cutting materials, and it needs the accurate machining tool fir higher output of engine. This paper is concerned with a study on TiN coated 6 edges reamer for improving machining accuracy of cylinder head guide pin. The reamer shape is changed from 4 edges to 6 edges for the improvement of machining accuracy. Also, TiN coating is applied to the improvement of surface roughness of cylinder head guide pin and tool life of 6 edges reamer. It is noted that 6 edges reamer are effective in controlling the dimensional accuracy and surface roughness as well as increasing tool life.

절삭실험을 이용한 저합금강의 유동응력 결정 및 검증 (Determination and Verification of Flow Stress of Low-alloy Steel Using Cutting Test)

  • 안광우;김동후;김태호;전언찬
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.50-56
    • /
    • 2014
  • A technique based on the finite element method (FEM) is used in the simulation of metal cutting process. This offers the advantages of the prediction of the cutting force, the stresses, the temperature, the tool wear, and optimization of the cutting condition, the tool shape and the residual stress of the surface. However, the accuracy and reliability of prediction depend on the flow stress of the workpiece. There are various models which describe the relationship between the flow stress and the strain. The Johnson-Cook model is a well-known material model capable of doing this. Low-alloy steel is developed for a dry storage container for used nuclear fuel. Related to this, a process analysis of the plastic machining capability is necessary. For a plastic processing analysis of machining or forging, there are five parameters that must be input into the Johnson-Cook model in this paper. These are (1) the determination of the strain-hardening modulus and the strain hardening exponent through a room-temperature tensile test, (2) the determination of the thermal softening exponent through a high-temperature tensile test, (3) the determination of the cutting forces through an orthogonal cutting test at various cutting speeds, (4) the determination of the strain-rate hardening modulus comparing the orthogonal cutting test results with FEM results. (5) Finally, to validate the Johnson-Cook material parameters, a comparison of the room-temperature tensile test result with a quasi-static simulation using LS-Dyna is necessary.

초정밀 가공기용 마이크로 스테이지의 힌지 형상에 따른 안정성 해석 (Stability Analysis According to Hinge Type Alteration on Micro Stage for Micro Cutting Machine)

  • 김재열;곽이구;심재기;안재신;송경석;한재호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.993-998
    • /
    • 2002
  • Ultra precision processing technology is the field which is seriously protected its technology by advanced nations. Because of this reason, this technology is very difficult to supply for domestic companies, also domestic companies are revealed the limit of technology development by itself. And then, those are depend on the technology development of advanced nation, domestic companies are not conquer application step with already developed parts. Of course, some cases of its research are succeed. those are included element technology, system technology and so on, for development of ultra precision processing system. To conquer technology holding ultra precision processing accuracy of no level, active research are needed. In this paper, stability of ultra precision cutting unit is analyzed, this unit is the kernel unit in ultra precision processing machine. According to alteration of shape and material about hinge, stability investigation is performed Through this stability investigation, trial and error is reduced in design and manufacture, at the same time, we are accumulated foundation data for un it control.

  • PDF

평엔드밀 포켓가공시 절삭력과 공구변형에 관한 연구 (A Study on the Cutting Forces and Tool Deformation when Flat-ended Pocket Machining)

  • 최성윤;권대규;박인수;왕덕현
    • 한국기계가공학회지
    • /
    • 제16권2호
    • /
    • pp.28-33
    • /
    • 2017
  • Recently, the operation of precision pocket machining has been studied for the high speed and accuracy in industry to increase production and quality. Moreover, the demand for products with complex 3D free-curved surface shapes has increasing rapidly in the development of computer systems, CNC machining, and CAM software in various manufacturing fields, especially in automotive engineering. The type of aluminum (Al6061) that is widely used in aerospace fields was used in this study, and end-mill down cutting was conducted in fillet cutting at a corner with end-mill tools for various process conditions. The experimental results may demonstrate that the end mill cutter with four blades is more advantageous than that of the two blades on shape forming in the same condition precise machining conditions. It was also found that cutting forces and tool deformation increased as the cutting speed increased. When the tool was located at $45^{\circ}$ (four locations), the corner was found to conduct the maximum cutting force rather than the start point of the workpiece. The experimental research is expected to increase efficiency when the economical precision machining methods are required for various cutting conditions in industry.

피스톤 가공용 CNC 선반 HOT-1000 개발에 관한 연구 (A study on the Development of CNC Lathe HOT-1000)

  • 김경석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1995년도 추계학술대회 논문집
    • /
    • pp.12-17
    • /
    • 1995
  • The purpose of this study si the development of a lathe which can cut any pistons of oval shape with high seed, accuracy and precision by CNC (Computer Numerical Control) method. Yaxis which is the position determinating mechanism with high speed response was added to the CNC lathe and the ovality and profile was cut under the control of C-Y-Z axes at same tile. In the case of ovality of $\Phi$ improved up to 2500rpm(Y axis : 83Hz) by high speed cutting than modeling method. Since a personal computer is used, it is easy to change the shape of piston and can be applied promptly to many types of piston shape by only changing data files.

  • PDF

자동차 부품의 정밀 압출 단조 (Net Shape Flow Press of Automobile Parts)

  • 강대건
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 자동차부품 제작기술의 진보
    • /
    • pp.13-22
    • /
    • 1996
  • The quality requirements for metal forming products have become more strict. Machined parts, which could be produced only by cutting, can now be formed plastically. In order to reach the mechanical strength and geometrical accuracy, reasonable production technologies should be developed. In this presentation, some basic flow-press-technologies in the metal forming are introduced. Some real sample parts for a passenger can are shown and their forming plans are explained. Also problems and solutions for the production of bevel gears are discussed.

공구접근 경로가 밀링 가공된 원통 구멍 형상에 미치는 영향 (Effect of Tool Approaching Path on the Shape of Cylindrical Hole in a Milling Process)

  • 김광희
    • 한국기계가공학회지
    • /
    • 제3권4호
    • /
    • pp.50-55
    • /
    • 2004
  • Because of the development in mold industries, the geometrical form accuracy of the milled surface is getting more and more important. It has been known that the geometrical form accuracy is affected by machine conditions, cutting conditions, tool conditions and tool path and so on. Among them, the tool approaching path causes the change in material removal per tooth at the end of each machining cycle. And, this change generates the geometrical form error around the region where the tool engages the workpiece initially. So, it is impossible to eliminate the geometrical error caused by the tool approaching path. Thus, characteristics of this geometrical error are studied analytically and experimentally to minimize this region.

  • PDF