• 제목/요약/키워드: Cutting process model

검색결과 392건 처리시간 0.027초

엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구 (A Study on the Precision Machining during End Milling Poeration by Prediction of Generated Surface Topography)

  • 이상규;고성림
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.788-793
    • /
    • 1997
  • The surface,generated by end milling operation, is deteriorated by tool runout,vibration,friction,tool deflection, etc. In many source,deflection of tool affects to surfave accuracy. To develop a surface accracy model,method for the prediction of the topography of machined surfaces has been developed based on models of machine tool kinematics and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool resulted in cutting force. For the more accurate prediction of cutting force,flexible end mill model is used to simulate cutting process. Compute simu;ation have shown the feasibility of the surface generation system.

  • PDF

신경회로망을 이용한 엔드밀 가공의 비절삭력계수 모델링 (Specific Cutting Force Coefficients Modeling of End Milling by Using Neural Network)

  • 이신영;이장무
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.979-987
    • /
    • 1999
  • In a high precision vertical machining center, the estimation of cutting forces is important for many reasons such as prediction of chatter vibration, surface roughness and so on, and cutting forces are difficult to predict because they are very complex and time variant. In order to predict the cutting forces of end-milling process for various cutting conditions, a mathematical model is important and this model is based on chip load, cutting geometry, and the relationship between cutting forces and chip loads. Specific cutting force coefficients of the model have been obtained as interpolation function types by averaging farces of cutting tests. In this paper, the coefficients are obtained by neural network and the results of the conventional method and those of the proposed method are compared. The results show that the neural network method gives more correct values than the function type and that in teaming stage as the omitted numbers of experimental data increases the average errors increase.

Improvement of Surface Integrity in Hard Turning With Sensitivity Analysis of Cutting Parameter

  • Kong, Jeong-Heung;Park, Man-Jin;Kim, Jin-Hyun;Jang, Dong-Young;Han, Dong-Chul
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.321-322
    • /
    • 2002
  • This paper presents study of effects of cutting parameters such as cutting speed, feed rate and depth of cut on the surface roughness in hard turning. Taguchi Method and linear regression model of design parameters were utilized to identify the controlling process parameters that can monitor the surface roughness in the hard turning operation. In the process optimization, experimental planning was performed using the orthogonal array and concept of the signal-to-noise ratio. Cutting parameters such as speed, feed rate, and depth of cut were selected as process parameters and the ANOVA analysis showed that feed rate and cutting speed had more effect on the roughness variation that depth of cut.

  • PDF

견실한 서보적응제어기를 응용한 절삭력 추종제어 (Application of an Adaptive Robust Controller to Cutting Force Regulation)

  • 김종원
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.78-89
    • /
    • 1991
  • 본 연구에서는 ARSC를 엔드밀링 공정에 적용하여, 절삭력을 추종제어하는 실 예를 제시하고자 한다.제2장에서는 ARSC를 절삭공정에 일반적으로 적용하기 위한 구체적인 이론전개를 설명하여, 제3장에 실시간 시뮬레이션의 방법과 결과를 예시하 고,마지막으로, 제4장에 엔드밀링 절삭시험을 위한 장치의 구성 및 그 결과를 설명하 였다.

능동적 토크제어를 통한 드릴공정의 안정화 (Stabilization of the Drilling Process through Active Torque Control)

  • 김중배;이상조
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2234-2241
    • /
    • 1993
  • The torque variation in drilling process represents the problems of the efficient and stable machining. In order to cope with them, the active control method is adopted to drill the workpiece under the constant cutting torque though the cutting stiffness of the workpiece or the diameter of the drill bit changes. The cutting process is modeled in the geometric viewpoint related with the feed and the number of cutting lips. And the dynamic model is approximated to the first order system for the purpose of control. The adaptive PI control is used in computer simulations and experiments. The results of the study show the validity of the drilling method with torque control.

절삭조건에 따른 엔드밀링 가공시 전단 및 마찰 특성 분석(1. 상향 엔드밀링) (Analysis of Shear and Friction chacteristics in End milling with variable cutting condition (Part 1 Up-end milling))

  • Lee, Young-Moon;Yang, Seung-Han;Ming Chen;Jang, Seung-Il
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.223-228
    • /
    • 2003
  • In end milling processes, characterized by use of rotating tools, the underformed chip thickness varies periodically with the phase change of tool. In current study, as a new approach to analyse shear behaviors In the shear plane and chip-tool friction behavior chip-tool contact region during an end milling process. In this approach, an up-end milling process is transformed into an equivalent oblique cutting process. Experimental investigations for two sets of cutting tests i.e.. up-end milling and the equivalent oblique cutting test were performed to verify the presented model.

  • PDF

비절삭저항 상수 변화에 따른 절삭력 분석 (An analysis of cutting force according to specific force coefficients)

  • 김종도;윤문철
    • 한국기계가공학회지
    • /
    • 제13권2호
    • /
    • pp.108-116
    • /
    • 2014
  • Considering the run-out effect and cutting force coefficients, the cutting force profile of half immersion end-milling was analyzed in detail. The effects of three specific cutting-force coefficients and three edge-force coefficients are verified. Through a detailed investigation, it is proved that the radial cutting force coefficients and are the major factors which increase the cutting forces Fx and Fy in end-milling. However, the axial cutting force coefficients have no influence on the force Fx and Fy changes in end-milling. Also, the analyzed end-milling force model shows good consistency with the actual measured force with regard to Fx and Fy. Thus, this model can be used for the prediction of the force history in end-milling with run-out, and it incurs a different force history with different start and exit immersion angles as well as holding effects.

Analytical model for estimation of digging forces and specific energy of cable shovel

  • Stavropoulou, M.;Xiroudakis, G.;Exadaktylos, G.
    • Coupled systems mechanics
    • /
    • 제2권1호
    • /
    • pp.23-51
    • /
    • 2013
  • An analytical algorithm for the estimation of the resistance forces exerted on the dipper of a cable shovel and the specific energy consumed in the cutting-loading process is presented. Forces due to payload and to cutting of geomaterials under given initial conditions, cutting trajectory of the bucket, bucket's design, and geomaterial properties are analytically computed. The excavation process has been modeled by means of a kinematical shovel model, as well as of dynamic payload and cutting resistance models. For the calculation of the cutting forces, a logsandwich passive failure mechanism of the geomaterial is considered, as has been found by considering that a slip surface propagates like a mixed mode crack. Subsequently, the Upper-Bound theorem of Limit Analysis Theory is applied for the approximate calculation of the maximum reacting forces exerted on the dipper of the cable shovel. This algorithm has been implemented into an Excel$^{TM}$ spreadsheet to facilitate user-friendly, "transparent" calculations and built-in data analysis techniques. Its use is demonstrated with a realistic application of a medium-sized shovel. It was found, among others, that the specific energy of cutting exhibits a size effect, such that it decreases as the (-1)-power of the cutting depth for the considered example application.

비젼 센서를 이용한 디버링 공정의 자동화에 관한 연구 (A Study on the Automation of Deburring Process Using Vision Sensor)

  • 신상운;갈축석;강근택;안두성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.553-558
    • /
    • 1994
  • In this paper, we present a new approach for the automation of deburring process. An algorithm for teaching skills of a human expert to a robot manipulator is developed. This approach makes use of TSK fuzzy model that can express a highly nonlinear functional relation with small number of rules. Burr features such as height, width, area, cutting area are extracted from image processing by use of the vision system. Cutting depth, repeative number and normal cutting force are chosen as control signals representing actions of the human expert. It is verified that our processed fuzzy model can accurately express the skills of human experts for the deburring process.

  • PDF

고속 절삭공정 중 톱니형 칩 생성 예측 (Prediction of Serrated Chip Formation in High Speed Metal Cutting)

  • 임성한;오수익
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.358-363
    • /
    • 2003
  • Adiabatic shear bands have been observed in the serrated chip during high strain rate metal cutting process of medium carbon steel and titanium alloy The recent microscopic observations have shown that dynamic recrystallization occurs in the narrow adiabatic shear bands. However the conventional flow stress models such as the Zerilli-Armstrong model and the Johnson-Cook model, in general, do not predict the occurrence of dynamic recrystallization (DRX) in the shear bands and the thermal softening effects accompanied by DRX. In the present study, a strain hardening and thermal softening model is proposed to predict the adiabatic shear localized chip formation. The finite element analysis (FEA) with this proposed flow stress model shows that the temperature of the shear band during cutting process rises above 0.5Τ$_{m}$. The simulation shows that temperature rises to initiate dynamic recrystallization, dynamic recrystallization lowers the flow stress, and that adiabatic shear localized band and the serrated chip are formed. FEA is also used to predict and compare chip formations of two flow stress models in orthogonal metal cutting with AISI 1045. The predictions of the FEA agreed well with the experimental measurements.s.