• Title/Summary/Keyword: Cutting of metals

Search Result 95, Processing Time 0.026 seconds

Experimental Investigations into the Precision Cutting of High-pressured Jet for Thin Multi-layered Material (다층박판재료의 초고압 젯 정밀가공에 대한 실험적 연구)

  • Park, Kang-Su;Bahk, Yeon-Kyeung;Lee, Jung-Han;Lee, Chae-Moon;Go, Jeung-Sang;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.44-50
    • /
    • 2009
  • High-pressured jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics and composite materials because of some advantages such as heatless and non-contacting cutting. Similarly to the focused laser beam machining, it is well known as a type of high-density energy processes. High-pressured jetting is going to be developed not only to minimize the cutting line width but also to achieve the short cutting time as soon as possible. However, the interaction behavior between a work piece and high-velocity abrasive particles during the high-pressured jet cutting makes the impact mechanism even more complicated. Conventional high-pressured jetting is still difficult to apply to precision cutting of micro-scaled thin work piece such as thin metal sheets, thin ceramic substrates, thin glass plates and TMM (Thin multi-layered materials). In this paper, we proposed the advanced high-pressured jetting technology by introducing a new abrasives supplying method and investigated the optimal process conditions of the cutting pressure, the cutting velocity and SOD (Standoff distance).

Prediction of Surface Roughness on the PCD Tool Turned Aluminum Alloys by using Regression Analysis (Al합금 PCD 선산가공에서 회귀분석에 의한 표면거칠기 예측)

  • Lee, Sun-Woo;Lee, Dong-Ju
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.41-47
    • /
    • 2012
  • Surface roughness is widely used as an index for processing degree of accuracy. Recently, regression analysis to predict the machining results are actively used to characterize a cutting operations. In the past, diamond machining had been used for ultra precision cutting operation, but now industrial diamond tools like PCD(Polycrystaline Diamond) has been widely used in ultraprecision machining of nonferrous metals. In this study, the authors focus on the effect of PCD tool property on the surface roughness of different types of aluminum alloy after cutting process by CNC operated lathe. Based on the regression analysis approach on a surface roughness data obtained by experiment, predictive analysis of surface roughness is effective to achieve better surface quality.

A Prediction of Surface Roughness on the PCD Tool Turned Al5083 by using Regression Analysis (Al5083 PCD 선삭가공에서 회귀분석에 의한 표면거칠기 예측)

  • Lee, Sun-Woo;Lee, Dong-Ju
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.69-74
    • /
    • 2012
  • Surface roughness is widely used as an index for processing degree of accuracy. Recently, regression analysis to predict the machining results are actively used to characterize a cutting operations. In the past, diamond machining had been used for ultra precision cutting operation, but now industrial diamond tools like PCD(Polycrystalline Diamond) have been widely used in ultraprecision machining of nonferrous metals. In this study, the authors focus on the effect of PCD tool property on the surface roughness of Al5083 aluminum alloy after cutting process by CNC operated lathe. Based on the regression analysis approach on a surface roughness data obtained by experiment, predictive analysis of surface roughness is effective to achieve better surface quality.

High power CO$_{2}$laser beam welding of ASIA 316 stainless steel

  • 김재도;조용무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.321-327
    • /
    • 1991
  • High power laser beams are used in a wide variety of materials processing applications such as cutting, welding, drilling and surface treatment. The CO$\sub$2/ laser is increasingly used in laser beam welding because of the highly potential advantages. High power laser welding is a high energy density, no filler metals and low heat input process to join metals. As the comparison with the conventiona welding, precision work and good fit-up to join the metals are required and maintenance is expensive at present. The principal variables of laser beam welding are the laser beam power, travel speed and bean spot size. The penetration depth during laser beam welding is directly related to the power density of the laser beam. Generally, for a constant beam size, the penetration depth increases with increasing laser beam power.

Evaluation of Micro End-Milling Characteristics of AlN-hBN Composites Sintered by Hot-Pressing (열간가압소결에 의해 제조된 AlN-hBN 복합재료의 마이크로 엔드밀링 가공특성 평가)

  • Baek, Si-Young;Cho, Myeong-Woo;Seo, Tae-Il
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.390-401
    • /
    • 2008
  • The objective of this study is to evaluate various machining characteristics of AlN-hBN machinable ceramics in micro end-milling process for its further application. First, AlN based machinable ceramics with hBN contents in the range of 10 to 20vol% were prepared by hot-pressing. Material properties of the composites, such as relative density, Vickers hardness, flexural strength, Young's modulus and fracture toughness were measured and compared. Then, micro end-milling experiments were performed to fabricate micro channels using prepared system. During the process, cutting forces, vibrations and AE signals were measured and analyzed using applied sensor system. Machined micro channel shapes and surface roughness were measured using 3D non-contact type surface profiler. From the experimental results, it can be observed that the cutting forces, vibrations and AE signal amplitudes decreased with increasing hBN contents. Also, measured surface roughness and profiles were improved with increasing hBN contents. As a result of this study, optimum machining conditions can be determined to fabricate desired products with AlN-hBN machinable ceramics based on the experimental results of this research.

The Characteristics of Ultra Precision Machining of Optical Crystals for Infrared Rays (적외선용 광학소자의 초정밀 절삭특성)

  • Won, Jong-Ho;Park, Won-Kyoo;Kim, Ju-Hwan;Kim, Geon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.57-62
    • /
    • 2003
  • Machining technique for optical crystals with single point diamond turning tool is reported in tills paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. SPDT has been widely used in manufacturing optical reflectors of non-ferrous metals such as aluminum and copper which are easy to be machined for their proper ductility. But optical crystals being discussed here are characterized by their high brittleness which makes it difficult to obtain high quality optical surfaces on them. The purpose of our research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result, the cutting force is steady, the cutting force range is 0.05-0.08N. The surface roughness is good when spindle is above 1400rpm, and feed rate is small. The influence of depth of cut is very small.

  • PDF

The Characteristics of Ultra Precision Machining of Si and Ge (Si와 Ge의 초정밀 절삭특성)

  • 원종호;박상진;안병민;도철진;홍권희;김건희;유병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.775-778
    • /
    • 2000
  • Single point diamond turning technique fur optical crystals is reported in this paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. SPDT has been widely used in manufacturing optical reflectors of non-ferrous metals such as aluminum and copper which are easy to be machined for their proper ductility. But optical crystals being discussed here are characterized by their high brittleness which makes it difficult to obtain high quality optical surfaces on them. The purpose of cur research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result, the cutting force is steady, the cutting force range is 0.05-0.08N. The surface roughness is good when spindle is above 1400rpm. and feed rate is small. The influence of depth of cut is very small.

  • PDF

Performance assessment of HEPA filter to reduce internal dose against radioactive aerosol in nuclear decommissioning

  • Hee Kwon Ku;Min-Ho Lee;Hyunjin Boo;Geun-Dong Song;Deokhee Lee;Kaphyun Yoo;Byung Gi Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1830-1837
    • /
    • 2023
  • The thermal cutting of contaminated or activated metals during decommissioning nuclear power plants inevitably results in the release of radioactive aerosol. Since radioactive aerosols are pernicious particles that contribute to the internal dose of workers, air conditioning units with a HEPA filter are used to remove radioactive aerosols. However, a HEPA filter cannot be used permanently. This study evaluates the efficiency and lifetime of filters in actual metal cutting condition using a plasma arc cutter and a high-resolution aerosol detector. The number concentration and size distribution of aerosols from 6 nm to 10 ㎛ were measured on both the upstream and downstream sides of the filter. The total aerosol removal efficiency of HEPA filter satisfies the standard of removing at least 99.97% of 0.3 ㎛ airborne particles, even if the pressure drop increases due to dust feeding load. The pressure drop and particle size removal efficiency at 0.3 ㎛ of the HEPA filter were found to increase with repeated cutting experiments. By contrast, the efficiency of used HEPA filter reduced in removing nano-sized aerosols by up to 79.26%. Altogether, these results can be used to determine the performance guidance and replacement frequency of HEPA filters used in nuclear power plants.

First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

  • Maidana, Carlos O.;Nieminen, Juha E.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.82-91
    • /
    • 2017
  • Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.

Trend on the Recycling Technologies for Silicon Sludge by the Patent and Paper Analysis (특허(特許)와 논문(論文)으로 본 실리콘 슬러지의 재활용(再活用) 기술(技術) 동향(動向))

  • Jang, Hee-Dong;Kil, Dae-Sup;Chang, Han-Kwon;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.60-68
    • /
    • 2012
  • Silicon wafer for making semiconductor devices and solar cell is used in the semiconductor and solar industry, respectively. Silicon wafer is produced by cutting with silicon ingot and sludge contains silicon occurs from cutting process. Generation of silicon sludge is increasing on developing all industry sectors which have need of semiconductor device. These days it has been widely studied for the recycling technologies of the silicon sludge from view points of economy and efficiency. In this paper, patents and paper on the recycling technologies of the silicon sludge were analyzed. The range of search was limited in the open patents of USA (US), European Union (EU), Japan (JP), Korea (KR) and SCI journals from 1982 to 2011. Patents and journals were collected using key-words searching and filtered by filtering criteria. The trends of the patents and journals was analyzed by the years, countries, companies, and technologies.