• 제목/요약/키워드: Cutting conditions

검색결과 1,305건 처리시간 0.023초

통계적 기법을 이용한 선삭가공 절삭조건에 따른 공구온도 예측 (A Study on the Tool Temperature Estimation for Different Cutting Conditions in Turning Using a Statistical Method)

  • 송길용;문홍현;박병규;김성청;이응석
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.96-102
    • /
    • 2002
  • This study is on the estimation method of toot temperature for different tool nose radius and cutting conditions in turning. Experimental analysis has been performed in different cutting conditions such as cutting speed, feed rate, and depth of cut for the tool nose radius, 0.4R, 0.8R using SMC workpiece materials. Tool temperature is measured using a thermo-couple which is embedded in the insert tip. Using multiple linear regression method, the tool temperature can be determined as an exponential equation with cutting variables and tool nose diameters for the different tool materials. The equations determined in this study show a good correlation for the cutting conditions and can be used for a tool temperature estimation technique. The result indicates that the tool temperature decreases for increasing the tool nose radius in general. Also, nose radius hardly influences on the tool temperature compared with cutting speed, feed rate and depth of cut. This method will be useful for the estimation of tool life and temperature using limited experimental data for given cutting conditions.

강판의 절단조건 변화에 따른 절단특성에 관한 연구 (A Study on the Cutting Characteristics of Plate Steel Under Various Cutting Conditions.)

  • 김인철;김성일;고흥;김승기
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 춘계학술발표대회 개요집
    • /
    • pp.36-38
    • /
    • 2002
  • This paper is a study on the effect of the cutting speed, length of tip-specimen and cutting thickness in CNC gas cutting of the high-tensile steel plate(AH36). Experiments were performed to investigate the variations of cutting surface, surface roughness and kerf width under various cutting conditions.

  • PDF

선삭시 절삭조건이 표면거칠기에 미치는 영향 분석 (Effects of Cutting Conditions on Surface Roughness in Turning)

  • 이신영;김홍남
    • 한국정밀공학회지
    • /
    • 제18권8호
    • /
    • pp.139-149
    • /
    • 2001
  • The effects of the cutting conditions on the surface roughness of workpiece in turning were studied in this paper. The workpieces made of carbon steel SM20C and SM45C were tamed without the support of the tailstock center. Cutting conditions were changed in three or flour steps in each parameter and cutting fluid was used. The surface roughness results of tests were measured and the effects of the cutting conditions were analyzed by the method of analysis of variance. The summary of the experimental research is as follows. The main parameters were cutting speed, fred-rate, depth of cut, and the interactions between speed and fled-rate, speed and depth of cut, and fred and depth of cut. As cutting speed increased, surface roughness showed lower value. The surface roughnesses of feed-rate 0.102 mm/rev and 0.147 mm/rev were better than those of feed-rate 0.05 mm/rev and 0.2 mm/rev.

  • PDF

표면거칠기와 절삭력을 고려한 Al7075-T0 선삭가공 최적화 (Machining Optimization of Al7075-T0 Turning Process Considering Surface Roughness and Cutting Forces)

  • 정지훈;김정석;김평호;구준영;임학진;이종환
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.842-847
    • /
    • 2012
  • The Response Surface Method(RSM) is used as optimal design technique of experimental conditions. In Al7075-T0 turning operation, the principle cutting force and the Center-line averaged roughness are measured to optimize machining process. In variation of feed, depth of cut and cutting speed, three cutting parameters are evaluated. The optimal cutting conditions of Al7075-T0 turning are suggested by RSM. As a main result, feed is the dominant cutting parameter in this turning process considering surface roughness and cutting force.

다이아몬드 미세형삭가공의 자려진동 발생경향에 관한 연구 (A Study on the Cutting Conditions of Self-Induced Chattering in Micro Shaping with Diamond Tool)

  • 임한석;이언주;김술용;안중환
    • 한국정밀공학회지
    • /
    • 제15권3호
    • /
    • pp.141-149
    • /
    • 1998
  • Diamond shaping is one of the machining strategies to make the optical micro-groove molds, and it is especially useful when the component is an assembly of the linear micro-groove array. A mirrorlike surface and an arbitrary crose-sectional curve can be easily made by the diamond tool. However, the cutting speed of shaping is relatively lower than that of the other cutting methods, and there exist an unstable cutting conditions that generate the chatter. This study is focused on the modeling of the simplified self-induced chatter of the diamond shaping, and the machinabilities of three materials are compared by cutting experiments. From the chatter model and experiments, it is found that the unstable cutting conditions exist when the depth of cut is low and cutting speed is high. It is also found that the brass is relatively good material in micro shaping than copper or aluminium from the cutting experiments.

  • PDF

선삭가공에서 공작물의 형상오차 예측에 관한 연구 (A Study on the Geometric Error Prediction of Workpiece in Turning)

  • 이문재;김동현;이춘만
    • 한국기계가공학회지
    • /
    • 제10권6호
    • /
    • pp.9-15
    • /
    • 2011
  • Any relative deformation between the cutting tool and the workpiece at machining point results directly in geometric and dimensional errors. The sources of relative deformations between the cutting tool and the workpiece at the contact point may be due to vibration, thermal deformation and cutting forces. In this paper, geometric error prediction of workpiece in turning has been investigated. To reach this goal, turning experiments are carried out according to selected cutting conditions. The variable cutting conditions are cutting speed, depth of cut and feed rate. The results will be useful as a guidance to select cutting conditions to improve the geometrical accuracy.

Monitoring of Dry Cutting and Applications of Cutting Fluid for Ball End Milling

  • Tangjitsitcharoen, Somkiat;Rungruang, Channarong;Laiaddee, Duangta
    • Industrial Engineering and Management Systems
    • /
    • 제9권3호
    • /
    • pp.242-250
    • /
    • 2010
  • For economical and environmental reasons, the aim of this research is hence to monitor the cutting conditions with the dry cutting, the wet cutting, and the mist cutting to obtain the proper cutting condition for the plain carbon steel with the ball end milling based on the consideration of the surface roughness of the machined parts, the life of the cutting tools, the use of the cutting fluids, the density of the particles of cutting fluids dispersed in the working area, and the cost of cutting. The experimentally obtained results of the relation between tool wear and surface roughness, the relation between tool wear and cutting force, and the relation between cutting force and surface roughness are correspondent with the same trend. The phenomena of surface roughness and tool wear can be explained by the in-process cutting forces. The models of the tool wear with the cutting conditions and the cutting times are proposed to estimate the tool cost for the different cooling strategies based on the experimental data using the multiple regression technique. The cutting cost is calculated from the costs of cutting tool and cutting fluid. The mist cutting gives the lowest cutting cost as compared to others. The experimentally obtained proper cutting condition is determined based on the experimental results referring to the criteria.

고장력 강판의 CNC Plasma 절단시 절단면에 관한 연구 (A Study on the Cutting Surfaces in CNC Plasma Cutting of high tensile steel plate)

  • 김인철;김성일
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.149-154
    • /
    • 2003
  • The cutting tests of high tensile steel plate(AH36) were carried out using CNC plasma arc cutting machine. Both top and bottom width of kerf and the surface roughness(Ra, Rmax) of cut surface are measured under various cutting conditions such as cutting speed, steel plate thickness, etc. In the CNC plasma arc cutting, the surface roughness decreases as cutting speed increases. The hardness is high up to 4mm depth from the cutting surface. In the cutting speed 1300~2100mm/min, the ratio of proper kerf width(Wt/Wb) is around 2.6. Through the series the series of experiments, the satisfactory cutting conditions of high tensile steel plate were found.

  • PDF

어닐링 열처리 조건에 따른 NITINOL 형상기억합금의 상변환 특성 연구 (Phase Transformation Characteristic of Nitinol Shape Memory Alloy with Annealing Treatment Conditions)

  • 여동진;윤성호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.426-429
    • /
    • 2003
  • In this study, phase transformation characteristics of Nitinol shape memory alloy with 54.5wt%Ni-45.5wt%Ti were investigated by varying with annealing treatment and cutting conditions through DSC(differential scanning calorimetry). Annealing treatment conditions were considered as heat treated time of 5 min, 15 min, 30 min, and 45 min, heat treated temperature of 40$0^{\circ}C$, 50$0^{\circ}C$, 5$25^{\circ}C$, 55$0^{\circ}C$, 575$^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$, 80$0^{\circ}C$, and 90$0^{\circ}C$, and environmental condition of heat treatment under vacuum or air. Cutting conditions were considered as no cutting, one side cutting, and two side cutting. Tensile test was also conducted on Nitinol shape memory alloy to investigate thermomechanical characteristics by varying with annealing heat treatment histories. According to the results, annealing treatment and cutting conditions were found to significantly affect on phase transformation and thermomechanical characteristics of Nitinol shape memory alloy.

  • PDF

실험계획법에 의한 마이크로 드릴링 공정의 최적 절삭조건 결정 (Determination of Optimum Micro Drilling Conditions Using Experimental Design Methods)

  • 김동우;조명우;이응숙;서태일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.993-998
    • /
    • 2002
  • watches, air bearings and printed circuit hoards (PCB). However, it is not easy to determine optimum cutting conditions since the micro drilling process is very sensitive to various disturbances. Also, undesirable characteristics to optimize the micro drilling are small signal-to-noise ratios, drill wandering motions and high aspect ratios. Thus, in this study, experimental design methods are applied to determine optimum cutting conditions. Suing the methods, three cutting parameters, fred, step and curving speed are optimized to minimize thrust forces. Obtained conditions are verified through required experimental works. As the results, it is shown that the experimental methods can be applied to micro drilling processes to determine Optimum Cutting Conditions.

  • PDF