• 제목/요약/키워드: Cutting Sound

검색결과 60건 처리시간 0.027초

Development of a Training System for Lathe Operation Using a Simulator with Relationship between Speed of Tool Feed and Cutting Sound/Shape of Chips

  • Kawashimo, Takashi;Doyo, Daisuke;Yamaguchi, Tatsuya;Nakajima, Ryosuke;Matsumoto, Toshiyuki
    • Industrial Engineering and Management Systems
    • /
    • 제14권2호
    • /
    • pp.175-182
    • /
    • 2015
  • The recent manufacturing industry in Japan has found it difficult to transfer skills from trained workers to inexperienced workers because the former ages and then retires. This is a particular problem for lathe process, as this operation requires explicit and tacit knowledge, and defining the skills clearly in a manual is difficult. This study aims to develop a training system for lathe operation by using a simulator; this includes formulas that help define the relationship between the speed of tool feed and cutting sound/shape of chips which were proposed in the preceding study. The developed training system is verified the effectiveness.

저소음 다이아몬드톱의 절삭소음특성에 관한 연구 (A study on the Cutting Noise Characteristics of Low-Noise Diamond Saw)

  • 김경훈;변서봉;정기정
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.228-233
    • /
    • 2007
  • An experimental and numerical approach has been carried out to characterize the noise and the safety of circular diamond saw with chinks by laser-cutting. The sound pressure level of a circular diamond saw with chinks was measured when cutting workpieces. Therefore, frequency analysis results show us that the sound level was reduced as position of chinks approach to out-diameter. But the safety of circular diamond saw was lower due to the stress concentrated at the edge of chinks while cutting workpieces. FEM analysis was used for safety evaluation with the variation position of chinks. The noise characteristics of circular diamond saw were also estimated during cutting test.

  • PDF

합금공구강재의 절삭음 음향주파수 분석에 의한 엔드밀 마모 검출에 관한 연구 (A Study on the End Mill Wear Detection by the Analysis of Acoustic Frequency for the Cutting Sound(KSD3753))

  • 이창희;김낙철
    • 융합신호처리학회논문지
    • /
    • 제5권4호
    • /
    • pp.281-286
    • /
    • 2004
  • FMS, FMC, FA, IMS의 구축에 있어서 최하위 단위인 공작기계의 자동화가 중요하다. 이를 위해서는 공작기계의 공구 감시기능(tool monitoring system)이 수행되어야 한다. 본 논문은 공구 감시기능의 자동화를 위해 종전의 공구마모 검출방법과는 달리 엔드밀의 마모상태에 따라 발생하는 절삭음의 음향주파수 분석을 통해 마모정도를 검출하는 방법을 제안하였다. 즉, 머시닝센터에서 공구마모가 잘되는 합금공구강재를 사용하고 이때 발생하게 되는 절삭음(cutting sound)을 음향 분석하여 공구 마모와 관련이 있는 가진 주파수(tooth passing frequency)를 찾아내고 또한 이 주파수의 크기 값과 공구마모(flank wear) 변화를 연구하여 엔드밀의 마모 상태를 추정하였다 이를 위해 본 연구에서는 실험 장비를 구성하고 절삭속도, 엔드밀마모, 공구직경을 절삭조건으로 하여 측정된 절삭음을 FFT 처리하였다. 또한 측정된 값을 회귀분석으로 모델링한 결과 엔드밀 마모 검출오차범위가 5.8% 이내로 나타나 음향주파수 분석에 의한 엔드밀 마모검출 방법의 유효성을 확인할 수 있었다.

  • PDF

비접촉센서를 이용한 Inconel 718 밀링가공에서 공구상태 감시 (Tool Condition Monitoring with Non-contacting Sensors in Inconel 718 Milling Processes)

  • 최용기;황문창;김영준;박강휘;구준영;김정석
    • 한국생산제조학회지
    • /
    • 제25권6호
    • /
    • pp.445-451
    • /
    • 2016
  • The Inconel 718 alloy is a well-known super-heat-resistant alloy and a difficult-to-cut material. Inconel 718 with excellent corrosion and heat resistance is used in harsh environments. However, the heat generated is not released owing to excellent physical properties, making processes (e.g., adhesion and thermal fatigue) difficult. Tool condition monitoring in machining is significant in reducing manufacturing costs. The cutting tool is easily broken and worn because of the material properties of Inconel 718. Therefore, tool management is required to improve tool life and machinability. This study proposes a method of predicting the tool wear with non-contacting sensors (e.g., IR thermometer for measuring the cutting temperature and a microphone for measuring the sound pressure level in machining). The cutting temperature and sound pressure fluctuation according to the tool condition and cutting force are analyzed using experimental data. This experiment verifies the effectiveness of the non-contact measurement signals in tool condition monitoring.

저소음 목재용 회전톱날의 개발에 관한 연구 (A Study of Developing the Low Noise Circular Saw Blade)

  • 강석춘
    • 한국정밀공학회지
    • /
    • 제17권7호
    • /
    • pp.147-155
    • /
    • 2000
  • To reduce the noise from wood cutting saw at the saw mill(lumber mill) or a construction area, some multi-layer sandwich saw blades which a aluminum or copper plate was inserted between the two steel plates were developed and were tested of the wood cutting noise level at various test places. From the research, it was found that the multi-layer saw blade with copper or aluminum plate between steel plates and spot welded 60 points could reduce the wood cutting sound level about 8.3 dB(97.031 dB - 88.743 dB) at indoor test and 3.8 dB(84.805 - 81.638 dB) at field test.

  • PDF

음압신호와 안정도제어법을 이용한 선삭작업에서의 채터 감시 및 제어 (Monitoring and Control of Turing Chatter using Sound Pressure and Stability Control Methodology)

  • 이성일
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.101-107
    • /
    • 1997
  • In order to detect and suppress chatter in turning process, a stability control methodology was studied through manipulation of spindle speeds regarding to chatter frequencies, The chatter frequency was identified by monitoring and signal processing of sound pressure during turing on a lathe. The stability control methodology can select stable spindle speeds without knowing a prior knowledge of machine compliances and cutting dynamics. Reliability of the developed stability control methodology was verified through turing experiments on an engine lathe. Experimental results show that a microphone is an excellent sensor for chatter detection and control .

  • PDF

음향주파수 분석에 의한 엔드밀의 마모상태 추정에 관한 연구 (A Study on the Wear Estimation of End Mill Using Sound Frequency Analysis)

  • 이창희;조택동
    • 대한기계학회논문집A
    • /
    • 제27권8호
    • /
    • pp.1287-1294
    • /
    • 2003
  • The wear process of end mill is so complicated process that a more reliable technique is required for the monitoring and controlling the tool life and its performance. This research presents a new tool wear monitoring method based on the sound signal generated on the machining. The experiment carried out continuous-side-milling for 4 cases using the high-speed-steel end mill under wet condition. The sound pressure was measured at 0.5m from the cutting zone by a dynamic microphone, and was analyzed at frequency domain. As the cutter impacts the workpiece surface, a situation of farced vibration arises in which the dominant forcing frequency is equal to the tooth passing frequency of the cutter. The tooth passing frequency appears as a harmonics form, and end mill flank wear is related with the first harmonic. It is possible to detect end . mill flank wear. This paper proposed the new method of the end mill wear detection.

선삭공정에서 음압을 이용한 공구마멸 파손의 상태감시 (Condition Monitoring of Tool Wear and Breakage using Sound Pressure in Turning Processes)

  • 이성일
    • 한국생산제조학회지
    • /
    • 제6권3호
    • /
    • pp.36-43
    • /
    • 1997
  • In order to make unmanned machining systems with satisfactory performances, it is necessary to incorporate appropriate condition monitoring systems in the machining workstations to provide the required intelligence of the expert. This paper deals with condition monitoring for tool wear and breakage during turning operation. Developing economic sensing and identification methods for turning processes, sound pressure measurement and digital signal processing technique are proposed. The validity of the proposed system is confirmed through the large number of cutting tests.

  • PDF

콤바인 전처리부의 소음 분석과 감소 방안 (Analysis and Reduction Method of Noise from Head of a Combine Harvester)

  • 김호중;박영준;심성보;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제32권3호
    • /
    • pp.153-159
    • /
    • 2007
  • This study was conducted to measure and analyze the noise from a combine head. The combine head, comprised of a cutting knife assembly, pick-up chains, horizontally conveying chains and vertically conveying chains, had an overall sound level of 101 dBA. The sound levels of each component were, respectively, 98.3 dBA for the cutting knife assembly, 88.9 dBA for the pick-up chains, 79.8 dBA for the horizontally conveying chains and 86.3 dBA for the vertically conveying chains, being equivalent to 54.4%, 18.4%, 6.5% and 13.7% of the overall head noise. The main cause of the head noise was considered the impacts that the joint of the cutting knife assembly made with frame when it oscillated. The impact sound was also generated when the chain lug collided with the chain case. To reduce these impact sound, anti-vibration rubbers were installed on the knife assembly joint and the chain cases. It reduced the head noise by 4 dBA but the overall noise level of the combine head was still high. In order to protect the combine operators more effectively from the noise, a safety cab needs to be installed on the combine.

엔드밀링에서 순간전단면을 이용한 절삭력 모델 연구 (A Study on the Instantaneous Shear Plane Based Cutting Force Model for End Milling)

  • Hong, Min-Sung
    • 한국공작기계학회논문집
    • /
    • 제11권4호
    • /
    • pp.34-43
    • /
    • 2002
  • The purpose of this paper is to further extend the theoretical understanding of the dynamic end milling process and to derive a computational model to predict the milling force components. A comparative assessment of different cutting force models is performed to demonstrate that the instantaneous shear plane based formulation is physically sound and offers the best agreement with experimental results. The procedure f3r the calculation of the model parameters used in the cutting force model, based on experimental data, has been presented. The validity of the proposed computational model has been experimentally verified through a series of cutting tests.