• Title/Summary/Keyword: Cutting Shape

Search Result 722, Processing Time 0.035 seconds

The Study on Cutting Characteristic according to a Shape, Size and Array of Cutter for Paper Shredder (문서세단기의 커터날 형상, 크기, 배열과 절단특성에 관한 연구)

  • Lee, Wi-Ro;Lee, Dong-Gyu;Kim, Min-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.56-63
    • /
    • 2006
  • The aim of this study is to find the best cutting conditions as analyzing cutting process of paper shredder and shape of cutter. The test has been done variation of torque and cutting velocity according to load. When shape of cutter and distance between cutter and shaft are changed, The variation of cutting force according to cutting angle and load is geometrically analyzed. The result of geometrical analysis is presented that the radius and array of cutter is the method to improve torque of paper shredder. In this paper it is presented as basic method of design to improve cutting performance of paper shredder.

A Study on Cutting Pattern Generation of Membrane Structures by Using Geometric Line (막 구조물의 측지선을 이용한 재단도 생성에 관한 연구)

  • Ahn, Sang-Gil;Shon, Su-Deok;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.125-132
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation. In shape finding, membrane structures are unstable structures initially. These soft structures need to be introduced initial stresses because of its initial unstable state, and it happens large deformation phenomenon. And also there are highly varied in their size, curvature and material stiffness. So, the approximation inherent in cutting pattern generation methods is quite different. Therefore, in this study, to find the structural shape after large deformation caused by Initial stress, we need the shape analysis considering geometric nonlinear ten And the geodesic line on surface of initial equilibrium shape and the cutting pattern generation using the geodesic line is introduced.

  • PDF

Shape Design of Guillotined Shear Cutters for Steel Pipes (강관의 Guillotine 전단날 형상 설계)

  • Cho Haeyong;Lee Sangmin;Lee Sungkil;Kim Yongyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.105-112
    • /
    • 2005
  • The guillotined cutting process for the pipe was studied in this paper. Until now guillotining mechanism can not be practically applied in the industries because of the deformation of sheared section around cutting area, the coarse sheared surface, and the burs. To find optimum shapes of blade, several types of blade were experimentally studied. The cutting force normal to the axial direction of the pipe was compared with the theoretical result based on the cutting energy. The experimental maximum cutting forces were very good agreement with the theoretical results. It also discussed that the design parameters of guillotining system such as the blade shape and the clearance between the blade and the die made effects to the deformation of the cutting cross section area. The results show that the guillotining method can be applicable to the pipe cutting system by optimizing the blade shape and the clearance between the blade and the die of the guillotined cutting system with respect to the sheared pipe material.

Analysis of the Cutting Shape as a Function of Feed Rate and Cutting Speed of Korean and Japanese Combines

  • Jin, Byung-Ok;Lee, Min-Ho;Jo, Jin-Seok;Jung, Ho-Jun;Kim, Chi-Ho;Kim, Hyeon-Tae
    • Journal of Biosystems Engineering
    • /
    • v.42 no.2
    • /
    • pp.80-85
    • /
    • 2017
  • Purpose: In this study, we attempted to analyze, by using a high-speed camera, the cutting shape as a function of cutting speed and feed rate. We compared the differences in cutting shape between domestic and foreign combines. Methods: Experiments were performed using plastic straws, and the results of two combine cutting blades, one from the Daedong Industry and one from Kuboda, were compared. The quality and performances of cutting were measured at three cutting positions: center and 68 cm to the left and right of the center. The feed rates were 0.6 m/s, 1.1 m/s, 1.6 m/s, and the cutting speeds were 600 RPM, 990 RPM, 1,380 RPM. For each speed, the cutting shape was measured three times, and the entire procedure was also repeated three times. Results: In the experiments, the domestic cutting blade achieved better results than the Japanese cutting blade. These results were obtained by studying the combination of feed rate and cutting speed, with the domestic combine attaining approximately 80% performance of the Japanese combine. We believe that additional data analysis is required, obtained from field experiments. Conclusions: The domestic cutting knives achieved better results than the Japanese cutting knives. These results are estimated from experiments conducted with different feed rates and cutting speeds; an in-depth analysis will require experiments in the real field with actual combines and a combination of multiple variables. Repeating the investigation on the length differences, broken and cut angle with various combinations of feed rate and cutting speed, will surely help to find the optimal cutting speed.

Effect of Feedrate and Specimen Shape on Cutting Force and Surface Roughness of Ultrasonic Dental Surgical Instrument (치과용 초음파 수술기의 이송속도 및 시편형상이 절삭반력과 표면거칠기에 미치는 영향)

  • Sang Ho Kim;Seung Han Yang;Joong Ho Lee;Jong Kyun Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.109-117
    • /
    • 2023
  • In this study, the effect of the shape of the specimen and the feedrate of the dental ultrasonic surgical instrument on the cutting force and surface roughness of the specimen is analyzed. Experimental specimens were made of SAWBONES artificial bone materials in square and spherical specimens. In addition, the cutting feedrate of the surgical instrument was controlled through the developed moving system. The cutting force generated when cutting the specimen was measured through a force sensor. After the experiment, the cutting surface of the specimen was observed through a three-dimensional optical microscope and the surface roughness was measured. Through one-way ANOVA, the effect of each specimen shape and feed rate on surface roughness was analyzed. As a result of the experiment, the cutting force increased proportionally in the initial feed rate increase stage, but the increase in cutting force decreased as the feed rate continued to increase. Also, the cutting force showed a difference according to the shape of the specimen. The spherical specimen with a relatively small cutting surface area had less cutting force than the square specimen. However, as a result of one-way ANOVA, it was found that the specimen shape and feed rate did not affect the surface roughness. In future studies, it is expected to be used for comparative analysis of ultrasonic surgical instruments and correlation analysis between cutting factors.

Machining Technology of Scroll shape by Feed control method (이송속도 제어를 통한 스크롤 형상의 가공기술)

  • 심상우;강명창;김정석;정현출
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.123-127
    • /
    • 1999
  • This paper suggests the establishment of high-accuracy and high-efficiency machining method of scroll shape workpiece by using the feed control method. The cutting paths for machining the inside and outside surfaces of the scroll-shape workpiece are calculated, and the calculation method of the cutting chip areas based on the coordinate of the base circle is shown. A feed control method is proposed for a constant cutting area and cutting force. By machining test of scroll shape workpiece, The machined accuracy of wrap, tool wear, and surface roughness are evaluated. By this method, Reduction of the machining time and large increase of the efficiency can be expected.

  • PDF

A Study on High Speed Positioning Device and Cutting Data Producing System for Noncircular Cutting with CNC Lathe (비원형 선삭을 위한 고속 위치결정 장치와 가공 데이터 작성 시스템에 관한 연구)

  • 김경석;김성식;김형택;송충현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.193-199
    • /
    • 2000
  • Control system for cutting piston used in vehicle that is one of the 3D shape cutting using CNC lathe is presented. In order to cut the hybrid piston shape using CNC lathe, defined piston shape and change into machine code. The control software was developed for the high speed piston shape cutting. In this paper, the performance of this software was evaluated practically. As a result, the evaluated cutting precision was quantitatively compared with theoretical precision. Also the productivity and the quality by using CNC lathe with control software were evaluated those by using profiling.

  • PDF

Effects of Cutting Angle on Kerf width and Edge Shape in the Hotwire Cutting of EPS Foam for the Case of Single-Sloped Cutting for VLM-s Process (VLM-s 공정을 위한 EPS 폼의 단순 경사 열선 절단시 절단 경사각이 절단폭과 모서리 형상에 미치는 영향)

  • 안동규;양동열
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.525-533
    • /
    • 2003
  • The dimensional accuracy and global roughness between successive layers of VLM-s, which is a new rapid prototyping process using hotwire cutter and EPS foam, depend significantly on the operating parameters of hotwire cutter. In the present study, the effect of cutting angle on the kerf width and edge shape in hotwire cutting of EPS foam for the case of single-sloped cutting with one cutting angle was investigated. Through single-sloped cutting tests, the modified relationship between kerf width and effective heat input, considering the effect of the cutting angle, and the relationship between the melted area and the cutting angle were obtained. In order to investigate the effect of cutting angles on the thermal field in EPS foam, transient heat transfer analyses using single-sloped volumetric heat flux model and locally-conformed mesh were performed. Through the comparison between experimental and numerical results, it was shown that the proposed analysis model is needed to estimate the three-dimensional temperature distribution of the EPS foam for the case of single-sloped hotwire cutting.

A Shape Finding and Cutting Pattern Determination for Membrane Structures (막 구조물에 관한 형상 탐색과 재단도 결정법)

  • Choi, Ho;Lee, Jang-Bog;Kim, Jae-Yeol;Sur, Sam-Uel;Kwon, Taek-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.175-182
    • /
    • 1998
  • The object of this study is shape finding and cutting pattern generation of membrane structures under the following assumptions : (1) material is linearly elastic (2) stress state is plane stress. Cable and membrane structures should introduce the nonlinear analysis considering geometric nonlinearity because these structures deform largely under the external loads. The analysis procedure is consisted of three steps considering geometric nonlinearity unlike any other structures. First step is the shape finding analysis to determine the initial equilibrium shape. Second step is the stress-deformation analysis to investigate the behaviors of structures under various external loads. Once a satisfactory shape has been found, a cutting pattern based on the shape finding analysis may be generated from the view point of construction. In this paper, (1) shape finding analysis formulation and an example, (2) cutting pattern determination procedure using weighted least-square minimization flattening method and some results are presented.

  • PDF

Phase Transformation Characteristic of Nitinol Shape Memory Alloy with Annealing Treatment Conditions (어닐링 열처리 조건에 따른 NITINOL 형상기억합금의 상변환 특성 연구)

  • 여동진;윤성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.426-429
    • /
    • 2003
  • In this study, phase transformation characteristics of Nitinol shape memory alloy with 54.5wt%Ni-45.5wt%Ti were investigated by varying with annealing treatment and cutting conditions through DSC(differential scanning calorimetry). Annealing treatment conditions were considered as heat treated time of 5 min, 15 min, 30 min, and 45 min, heat treated temperature of 40$0^{\circ}C$, 50$0^{\circ}C$, 5$25^{\circ}C$, 55$0^{\circ}C$, 575$^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$, 80$0^{\circ}C$, and 90$0^{\circ}C$, and environmental condition of heat treatment under vacuum or air. Cutting conditions were considered as no cutting, one side cutting, and two side cutting. Tensile test was also conducted on Nitinol shape memory alloy to investigate thermomechanical characteristics by varying with annealing heat treatment histories. According to the results, annealing treatment and cutting conditions were found to significantly affect on phase transformation and thermomechanical characteristics of Nitinol shape memory alloy.

  • PDF