• Title/Summary/Keyword: Cutting Resistance

Search Result 314, Processing Time 0.023 seconds

The Chemical Vapor Deposition of TiN on Cemented Tungsten Carbide Cutting Tools (초연합금절단공구상에 TiN의 화학증착피막에 관한 연구)

  • 이상래
    • Journal of the Korean institute of surface engineering
    • /
    • v.15 no.3
    • /
    • pp.138-145
    • /
    • 1982
  • The effects of the simultaneous variations of the ratio of feed gases(H2/N2 Flow ratio), feed gas flow rate (H2/N2, total-flow rate) and partial pressures of TiCl4 (PTiCl41) as well as deposition time and cobalt content of the substrate on the deposition rate of the TiN Coated Cemented Tungsten Carbide Tools were investigated. Deposition was carried out in the temperature range of 930$^{\circ}C$-1080$^{\circ}C$ and an activation energy of 46.5 Kcal/mole can be calculated. Transverse rupture strength was noticeably reduced by the TiN coating on the virgin surfa-ce of Cemented Tungsten Carbide, the extent of which was decreased according to the coa-ting thickness. Microhardness value observed on the work was in the range of 1700∼2000kg/mm, which were in well agreement with the value of bult TiN. The wear resistance of TiN layers was performed by turning test and it was observed that crater and flank resistance remarkably enhanced by TiN coating.

  • PDF

Development of the Abrasives for Water-jet by Using an Air Bubbling Sedimentation Rate Control Technique (에어 버블링을 이용한 침강속도 제어기법 적용 습식워터젯용 연마제 개발)

  • Lee, Dae-Hyung;Kim, Young-Bea;Mo, Se-Woong;Kim, Min-Ho;Lee, Chong-Mu
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.232-236
    • /
    • 2010
  • In recent years abrasive water jet (AWJ) has received significant attention as a technology used in the manufacturing industry for cutting materials. In this paper we report the development of a new preparation method of abrasives for water jet by using an air bubbling sedimentation rate control technique. The SiC abrasives prepared by an air bubbling sedimentation rate control technique using latex resin are found to be superior to the conventional abrasives not only in surface roughness uniformity but also in lifetime. The AWJ test results also show that the former has also better impact-resistance and wear-resistance than the latter.

A Study on the Micro-machining Technique for Fabrication of Micro Grooves (미세 홈 형성을 위한 마이크로 가공기술에 관한 연구)

  • 박정우;이은상;문영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.918-921
    • /
    • 2000
  • Micro-machining, one of the non-traditional machining techniques, can achieve a wanted shape of the surface using metal dissolution with electrochemical reaction and can be applied to the metal such as high tension, heat resistance and hardened steel. The workpiece dissolves when it is positioned close to the tool electrode in electrolyte and the current is applied. Traditional machining has been used in the industries such as cutting, deburring, drilling and shaping. The aim of this work is to develop Micro-machining techniques for micro shape by establishing appropriate machining parameters of micro-machining

  • PDF

A Study on the Shear Deformation Behavior of Inner Structure-Bonded Sheet Metal (접합판재의 전단 변형거동에 관한 연구)

  • Kim J. Y.;Chung W. J.;Yang D. Y.;Kim J. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.257-262
    • /
    • 2005
  • In order to improve the quality of the sheared surface in cutting of inner structure bonded sheet metal the cut-off operation is mainly investigated, which is the typical shearing process in sheet metal forming technology. The sandwich sheet metals considered have inner structure which is constructed in the form of crimped expanded metal and woven metal. The inner structure is bonded between solid sheet by resistance welding or adhesive bonding. The shearing process is visualized by the computer vision system installed in front of the cut-off die and the sheared surface is measured and quantitatively compared with the help of the optical microscope after cut-off operation. From test results we found that the influence of sheared position can be observed and explained clearly and this result can be utilized to get the better sheared surface.

The Characteristics of Shearing Resistance of Silicate-Grouted Soils (물유리계 약액고결토의 전단저항특성)

  • 정형식;류재일
    • Geotechnical Engineering
    • /
    • v.4 no.2
    • /
    • pp.45-55
    • /
    • 1988
  • Chemical grouting is one of the ground.improvement methods for the purpose of cutting o($\boxUl$ water and increasing the strength of soil. It has ben reported that the effect of strength increasement of groued roils is due to increase of cohesion. In this study, the effect of cohesion on the shearing resistance of grouted soil 9.as intr.estigated tall.ouch triaxial compression test. According to the result of this research, It is found that the improved cohesion increases rapidly up to the maximum value at a small strain and subsequent decrease of cohericn is due to the breaking of grout chemical at a larger strain.

  • PDF

A Study on the Shear Deformation Behavior of Inner Structure-Bonded sheet metal (접합판재의 전단 변형거동에 관한 연구)

  • Kim J. Y.;Kim J. H.;Chung W. J.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.11a
    • /
    • pp.33-38
    • /
    • 2004
  • In order to improve the quality of the sheared surface in cutting of inner structure bonded sheet metal the cut-off operation is mainly investigated, which is the typical shearing process in sheet metal forming technology. The sandwich sheet metals considered have inner structure which is constructed in the form of crimped expanded metal and woven metal. The inner structure is bonded between solid sheet by resistance welding or adhesive bonding. The shearing process is visualized by the computer vision system installed in front of the cut-off die and the sheared surface is measured and quantitatively compared with the help of the optical microscope after cut-off operation. From test results we found that the influence of sheared position can be observed and explained clearly and this result can be utilized to get the better sheared surface.

  • PDF

Hard Coating Materials Using Copolymers of 2,5-dichlorobenzophenone and 1,4-dichlorobenzene

  • Shin, Min Jae
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.661-665
    • /
    • 2022
  • In this study, 2,5-dichlorobenzophenone was synthesized as a monomer using 1,4-dichlorbenzene, and subsequently, copolymers of benzoyl-p-phenylene and p-phenylene were prepared. The average molecular weight was improved using the low-molecular-weight polymer cutting method. The average molecular weight and glass transition temperature of the synthesized polymers were estimated. The as-prepared polymer was used as a hard coating material, and the coating was conducted on a poly(methyl methacrylate) plate. Furthermore, physical properties of the coatings, such as pencil hardness, adhesive strength, and abrasion resistance, were estimated. As the amount of p-phenylene in the copolymer increased, pencil hardness and abrasion resistance improved. The amount of p-phenylene in the copolymer can be increased to 30 mol% in order to increase the hardness of the coating, and the adhesive strength was insufficient for the copolymers with p-phenylene ratio greater than 35 mol%.

A Simple Method for the Assessment of Fusarium Head Blight Resistance in Korean Wheat Seedlings Inoculated with Fusarium graminearum

  • Shin, Sanghyun;Kim, Kyeong-Hoon;Kang, Chon-Sik;Cho, Kwang-Min;Park, Chul Soo;Okagaki, Ron;Park, Jong-Chul
    • The Plant Pathology Journal
    • /
    • v.30 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • Fusarium head blight (FHB; scab) caused mainly by Fusarium graminearum is a devastating disease of wheat and barley around the world. FHB causes yield reductions and contamination of grain with trichothecene mycotoxins such as deoxynivalenol (DON) which are a major health concern for humans and animals. The objective of this research was to develop an easy seed or seedling inoculation assay, and to compare these assays with whole plant resistance of twenty-nine Korean winter wheat cultivars to FHB. The clip-dipping assay consists of cutting off the coleoptiles apex, dipping the coleoptiles apex in conidial suspension, covering in plastic bag for 3 days, and measuring the lengths of lesions 7 days after inoculation. There were significant cultivar differences after inoculation with F. graminearum in seedling relative to the controls. Correlation coefficients between the lesion lengths of clip-dipping inoculation and FHB Type II resistance from adult plants were significant (r=0.45; P<0.05). Results from two other seedling inoculation methods, spraying and pin-point inoculation, were not correlated with adult FHB resistance. Single linear correlation was not significant between seed germination assays (soaking and soak-dry) and FHB resistance (Type I and Type II), respectively. These results showed that clip-dipping inoculation method using F. graminearum may offer a real possibility of simple, rapid, and reliable for the early screening of FHB resistance in wheat.

The Effect of Surface Protective Material on the Impact Resistance in Filament Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 충격저항성에 미치는 표면 고무 보호재료의 영향)

  • Kang, Ki-Weon;Kim, Young-Soo;Lee, Mee-Hae;Choi, Rin
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.14-19
    • /
    • 2005
  • One area in which composites have been used rather extensively is for fabricating pressure vessel. These structures can be readily manufactured by filament winding, which is, as far as composite fabrication techniques are concerned, a relatively inexpensive method for producing composite structures. Unfortunately, the higher strength material and fabrication costs are not the only disadvantages of fiber-reinforced polymer composites when they are compared to metals. Additionally, these materials tend to exhibit brittle behavior. This is of particular concern when they are subjected to a low-velocity impact during routine handling a significant amount of structural damage can be introduced into the composites. The goals of this paper are to understand the impact damage behavior and identify the effect of surface coating materials on impact resistance in filament wound composite pressure vessels. For these, a series of low velocity impact tests was performed on specimens cutting from the full scale pressure vessel by the instrumented impact testing machine. The specimens are classified into two types with and without surface protective material. The visualization for impact damage is made by metallurgical microscope. Based on the impact force history and damage, the resistance parameters were employed and its validity in identifying the damage resistance of pressure vessel was reviewed. As the results, the impact resistance of the filament wound composites and its dependency on the protective material were evaluated quantitatively.

Development of Discharge Electrode for Machining Connector Mold applying MIM Process (MIM 공법 적용 커넥터 금형 가공용 방전 전극 개발)

  • Shin, Kwang-Ho;Jeon, Yong-Jun;Heo, Young-Moo
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.37-40
    • /
    • 2014
  • A discharge electrode plays a role of shaving off workpiece with spark generated by current in discharge machining. Accordingly, for the discharge electrode, an electrode with excellent wear resistance is necessary. Generally, Graphite and Cu are used as the materials of the electrode, and recently Cu-W is mainly used as an electrode with excellent wear resistance. However, the form of the electrode generally used is produced mostly using cutting work, so a lot of costs incur if several similar forms are needed. Thus, this study developed a Cu-W electrode using Metal Injection Molding (MIM) process to produce similar forms with excellent productivity and a great quantity of electrodes in a similar form in discharge machining and carried out a discharge machining test. In developing an electrode applying MIM, predicting contraction of a product in a sintering process, a mold expansion ratio of 1.29486 was given, but the actual product showed a percentage of contraction 24% to 32%, which showed a difference of 3% to 5%. In addition, to verify wear resistance of the discharge electrode, abrasion loss was measured after the discharge.

  • PDF