• Title/Summary/Keyword: Cutting Quality

Search Result 901, Processing Time 0.022 seconds

Process Optimization for the Laser Cutting of Cold Rolled STS Sheet (냉연 스테인리스강판의 레이저 절단 특성)

  • 이기호;김기철
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.59-68
    • /
    • 1996
  • This study was aimed to characterize the laser cutting process for the cold rolled stainless steel sheet. The principal process parameters of the cutting process were applied to both the continuous wave form and the pulsed wave form for the laser output mode. The laser-oxygen cutting process and the laser-nitrogen cutting process were also considered to characterize the quality and efficiency of the cutting process. The laser-oxygen cutting process revealed the better productivity than the laser-nitrogen cutting process, since the laser energy and the exothermic oxidation energy exerted on the laser-oxygen cutting process simultaneously during the entire cutting process. However, the straightness of the cutting section, which was considered as the most important factors, was inferior to that of the laser-nitrogen cutting process due to the formation of chromum oxide on the cutting surface. Frequency and duration of the pulsed wave form act as the main factors for the better quality, When the frequency increased from 100 Hz to 200 Hz and the duty increased from 20% to 40%, the quality factors such as the height of dross and the surface roughness were improved remarkably. The increase in the frequency from 200 Hz to 300 Hz, on the other hand, revealed the less effective in the cutting quality.

  • PDF

A Study on the Performance of Hardmetal with Whetstone Saw (초경톱과 숫돌톱의 성능에 관한 연구)

  • Lee, Chul-Ku;Lee, Woo-Ram;Kim, Jing-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.498-506
    • /
    • 2009
  • An experimental study was performed to select cutting parameters for better quality-products in hard metals such as steels. Usually, a hard metal can be cut with a rotary cutting knife and the process provides a good cutting quality result. However, the cutting machine is much sensitive in cutting conditions because of its complicated mechanism. By this reason, careful processing conditions must be taken to improve the quality of the products. This experimental study for better quality products with a rotary cutting knife was carried out with two main factors; cutting speeds and cutting and pooling forces. A two-dimensional profile measuring instrument is used to evaluate its cutting faces and the effects of processing factors are analyzed by a commercial software.

  • PDF

High Quality Plasma Cutting and Laser Cutting Technology (고품질 플라즈마 절단 및 레이저 절단기술)

  • Kim, Hwan Tae;Kil, Sang Cheol
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.30-34
    • /
    • 2017
  • The trend of the plasma cutting and laser cutting technology of metal alloys including high strength steel, aluminum alloys for the welding structures has been studied. The high-precision plasma systems offer a denser, higher energy arc that in effect produces a sharper cutting tool and high quality cutting products. The high-quality fiber laser systems with compact design and easy set-up make it ideal for cutting in the pipeline or steel structre manufacturing. This paper covers the scientometric analysis of the high efficient cutting technology which are based on the published research works in the 'plasma and laser', and 'cutting technology' obtained from Web of Science, and deals with the details of the background data of the plasma cutting and laser cutting technology.

A Study on the Selection of Cutting Conditions in High Speed Pipe Cutting Machine (고속 파이프 절단기의 절단 조건 선정에 관한 연구)

  • Ahn, Sung-Hwan;Shin, Sang-Hun;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.144-149
    • /
    • 2008
  • This study presents the selection of cutting conditions in high speed pipe cutting machine for the better quality. A high speed pipe cutting machine which uses a rotary knife can make good quality products in short time. But, the machine is much sensitive by cutting conditions because of the complicated mechanism. In this reason, many experiments for cutting condition selection are necessary to improve quality of production. This study carried out cutting experiments with the three factors that are cutting RPM, cutting force and pooling force. 2-dimensional profile measuring instrument is used to measure which is represented by ${\Delta}h$, a sum of burr and collapse height. The effects of factors are analyzed by using MINITAB, the commercial software.

Determinationof Optimal Cutting Condition for High Quality Cutting Surface (표면품질 향상을 위한 레이저 절단조건)

  • 황경현
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.37-41
    • /
    • 1990
  • The quality of cutting surface such as surface roughness, heat affected zone, serf width can be improved by controlling the parameters of cuting process. These parameters includes cutting velocity, laser beam power, material depth and assistant gas. Thermodynamic analysis and systematical experiments are attempted to pedict and determine the optimal cutting condition. There exists the optimal cutting condition to ensure high quality surface. Under this operation, the minimum surface roughness of the mild steel, the stainless steel and the titanium becomes 3.8${\mu}{\textrm}{m}$ 13${\mu}{\textrm}{m}$ and 10${\mu}{\textrm}{m}$ respectively.

  • PDF

Influence of Cutting Pressure on Laser Cut Quality (Relationship between Cutting Pressure and Cut Quality) (레이저 절단품질에 미치는 절단압력의 영향(2) (절단압력과 절단품질간의 상관관계))

  • Yang, Yeong-Su;Na, Seok-Ju;Kim, Won-Bae;Kim, Tae-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.1
    • /
    • pp.63-70
    • /
    • 1988
  • Laser cutting system uses a gas jet to remove the molten or varpozed material from the workpiece. The quality of the laser cut can be strongly influenced by the gas flow charac- teristics formed through the nozzle. Laser cutting experiments were carried out for SS41 and SUS 304 to investigate the relationship between cut quality and cutting pressure. The cutting speed, nozzle pressure and nozzle to workpiece distance were also considered. The cut specimens were inspected by various manners such as dross observation, surface roughness test and kerf width measurement. Based on the data of pressure measurement on workpiece and the results of cut surface inspection, the influence of the considered cutting conditions on cut quality could be evaluated. The results of this study will be valuable in planning the optimal laser cutting process and in designing the laser cutting nozzle.

  • PDF

Cutting Process Monitoring Using Tool Dynamometer in End-Milling Process (엔드밀 공정에서 공구 동력계를 이용한 절삭상태 감시)

  • 김홍겸;양호석;이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.14-18
    • /
    • 2001
  • Rise in cutting force causes tool damage and worsens product quality resulting in machining accuracy deterioration. Especially, fragile material cutting brings about breakage of material and worsens product surface quality. In this study, we trace the locus of cutting force and examine the machined surface corresponding to the cutting force loci. and build up a monitoring system for deciding normal operation or not of cutting process.

  • PDF

A Study on the Machining Characteristics by the Internal Quality of Conecting Rod's Meterials for Trucks (트럭용 커낵팅 로드 소재의 내부 품질에 따른 절삭 특성 연구)

  • 김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.97-101
    • /
    • 1996
  • In this paper, We have studied internal quality incluiding chemical compositions, microscopic structrue and nonmetalic inclusion of test materials. We have analyzed dynamic characteristics of cutting resistence including tensile strength value, hardeness value, impact value etcs. We have compared chip treatments of test materials. In analyzing internal quality, all of test materials have typical ferrite+pearlite structure. But, nonmetallic inclusion have oxide and sulfide inclusion in medium carbon steels, mainly sulfide inclusion is existed in S-free cutting steels. In Ca+S-free cutting steels, calcium aluminate and sulfide complex inclusion, had low-melting points, as deformation of sulfide and oxide inclusion is existed. machining characteristics, cutting resistence is maximum in Ca+S-free cutting steels, minimum in medium carbon steels. Chip treatements are excellent in S-free cutting steels, similar to the Ca+S free cutting steels and medium carbon steels.

  • PDF

Development of a Quality Analysis Program for Laser Fusion Cutting (레이저 용융 절단 해석 프로그램 개발)

  • 이성환;민헌식
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.72-79
    • /
    • 2002
  • Though the laser cutting process is increasingly used in industry, a process automation and systematic database is still yet to be developed. In this study, as the fundamental step toward the construction of a reliable process expert system, a laser cutting quality monitoring/analysis system is developed based on simulations and experimental results. The relations between laser process parameters and laser cutting surface quality parameters such as kerf geometry, striation, surface roughness and dross formation are characterized and analyzed. A graphical user interface is used to visualize the results.

A study on the vibration cutting of high-hardness mold steel (고경도 금형강의 진동 가공에 대한 연구)

  • Kim, Jong-Su
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.39-43
    • /
    • 2022
  • In this study, we designed an vibration cutting tool that can achieve improvements such as low cutting force, interrupted chip evacuation and better surface quality of cutting performance to obtain high-quality surface roughness and improvement of tool wear, which is an issue in the machining of high-hardness mold steel. Among the resonance frequency modes of the vibration cutting tool, the bending mode was used to maximize the driving amplitude of the vibration tool tip, and the resonance frequency was confirmed through the finite element method. After measuring the actual resonant frequency of the designed tool using an optical fiber sensor, the cutting force and machining surface of vibration cutting and conventional cutting were compared and analyzed in the turning process of high hardness mold steel (STAVAX). As a result of the experiment, the cutting force was reduced by about 20 % compared to the conventional cutting process, and the surface roughness was also improved by about 60 %. This study suggested that the tool wear and surface quality of high-hardness steel can be improved through the vibration cutting method in the machining of high hardness mold steel.