• Title/Summary/Keyword: Cutting Process

Search Result 2,284, Processing Time 0.024 seconds

Investigation of Micro Cutting Characteristics for Tungsten-Carbide Green Part (초경 그린파트 마이크로 절삭가공 특성 분석)

  • Kim, G.H.;Jung, W.C.;Yoon, G.S.;Heo, Y.M.;Kwon, Y.S.;Cho, M.W.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.191-196
    • /
    • 2010
  • Tungsten-carbide as typical difficult-to-cut material has excellent mechanical properties such as high thermal resistivity, mechanical strength and chemical durability. However, it is next to impossible for tungsten-carbide to be fabricated the needed parts by cutting process. In this study, for establishing the micro fabrication method of tungsten-carbide for micro injection or compression molding core, the investigation on micro cutting characteristics of tungsten-carbide green part which is made by powder injection molding process and easy to cut relatively was performed. For this, micro endmilling experiments of tungsten-carbide green part were performed according to various cutting conditions. Finally, the wear trend of micro endmill and the appearance of micro rib according to feed-rate and cutting depth per step were analyzed through SEM images of micro cutting feature and microscope images of micro tools.

A study on development of CAD/CAM system for plasma-arc cutting process (플래즈머 아크절단용 CAD/CAM 시스템 개발에 관한 여구)

  • 엄두간;노태정;한국찬;나석주;나규환
    • Journal of Welding and Joining
    • /
    • v.9 no.3
    • /
    • pp.52-61
    • /
    • 1991
  • In the recent years the computer-numerical controlled cutting process such as a plasma arc cutting and a laser cutting is widely applied to reduce the time and cost expense for generating NC part program of the parts to be cut. In the present study, a CAD system(C-CAD) was developed to generate automatically the NC part programs with CLDAT(Cutter Location Data)for the CNC plasma arc cutting system. The NC part programs are composed of the 2-dimensional drawing of the parts to be cut and the technological data. The shape data of the parts drawn in the Auto-CAD can be also used in the C-CAD, since the data file generated by the C-CAD is compatible with that by the Auto-CAD. In order to check its applicability, the C-CAD and CAM system were applied to cut the parts, and which showed the satisfactory results.

  • PDF

Hand Drum Form in Cutting of STD11 by W-EDM (W-EDM을 이용한 STD11의 절단시 북현상)

  • Park, Dong-Sam;Choi, Young-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.90-95
    • /
    • 2003
  • The W-EDM is very important In precision machining of die, punch and small parts of precision products, so this machining method is widely used in various fields of industry. In this study, machining characteristics of Hand Drum Form and surface roughness are investigated experimentally. As Hand drum form has great effect on straightness of cut-surface of workpiece, its evaluation is very important in precision cutting. As experimental material, the mold material, STD11 is used and machined by CNC wire-EDM using the 025mm wire in diameter with repeated cutting up to 6 times. The thickness of workpiece is vaned in 20, 40, 60, 80, 100mm Hand drum form and surface roughness are measured after each cutting. Experimental results show that four times-cutting is optimum in the point of hand drum form and surface roughness.

  • PDF

A Study on the Cutting Force Simulation for Ball-end Milling Operation (볼-엔드 밀링가공시 절삭력의 시뮬레이션에 관한 연구)

  • 홍민성;김종민
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.84-91
    • /
    • 2003
  • In metal cutting operation, it is very important that predict cutting force and work surface. Vibration is an unstable cutting phenomenon which is due to the interaction of the dynamics of the chip removal process and the structural dynamics of machine tool. When vibration on, it reduces tool life, results in poor surface roughness and low productivity of the machining process. In this study, the experiments were conducted in machining center without cutting fluid to investigate the phenomenon of vibration. In the experiments, accelerometers were set up at the tail stock and tool holder and signals were picked up. Surface roughness profiles are generated under the ideal condition and the occurrence of vibration based on the surface shaping simulation model.

Adaptive Cutting Parameter Optimization Applied to Face Milling Operations (면삭 밀링공정에서의 절삭조건의 적응 최적화)

  • 고태조;조동우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.713-723
    • /
    • 1995
  • In intelligent machine tools, a computer based control system, which can adapt the machining parameters in an optimal fashion based on sensor measurements of the machining process, should be incorporated. In this paper, the technology for adaptively optimizing the cutting conditions to maximize the material removal rate in face milling operations is proposed using the exterior penalty function method combined with multilayered neural networks. Two neural networks are introduced ; one for estimating tool were length, the other for mapping input and output relations from experimental data. Then, the optimization of cutting conditions is adaptively implemented using tool were information and predicted process output. The results are demonstrated with respect to each level of machining such as rough, fine and finish cutting.

A Study on the Cutting Force Simulation for Ball-end milling Operation (밀링가공시 절삭력의 시뮬레이션에 관한 연구)

  • 홍민성;김종민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.184-189
    • /
    • 2003
  • In metal cutting operation, it is very important that predict cutting force and work surface. Vibration is an unstable cutting phenomenon which is due to the interaction of the dynamics of the chip removal process and the structural dynamics of machine tool. when Vibration occurs, it reduces tool life, results in poor surface roughness and low productivity of the machining process. In this study, the experiments were conducted in machining center without cutting fluid to investigated phenomenon of the Vibration. In the experiments, accelerometers were set up at the tail stock and tool holder and the signals were picked up. In this paper, surface roughness profiles will be generated under the ideal condition and the occurrence of the vibration based on the surface shaping simulation model.

  • PDF

A Study on the Prediction Model of Surface Roughness by the Orthogonal Design for Turning Process (선반작업에서 직교계획법을 이용한 표면 거칠기 예측모델에 관한 연구)

  • 홍민성;염철만
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.89-94
    • /
    • 2001
  • This paper presents a study of surface roughness prediction model by orthogonal design in turning operation. Regression analysis technique has been used to study the effects of the cutting parameters such as cutting speed, feed depth of cut, and nose radius on surface roughness. An effect of interaction between two parameters on surface roughness has also been investigated. The experiment has been conducted using coated tungsten carbide inserts without cutting fluid. The reliability of the surface roughness model as a function of the cutting parameters has been estimated. The results show that the experimental design used in turning process is a method to estimate the effects of cutting parameters on sur-face roughness.

  • PDF

A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in fuming Operation(1) (환경 친화적 기계가공 기술에 관한 연구 선삭가공시 회전분리기구에 의한 절삭유 미립화와 환경영향(I))

  • Hwang, Joon;Chung, Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.73-79
    • /
    • 2002
  • This paper presents the experimental results to verify the environmental consciousness with economic balances due to cutting fluid behaviors, effectiveness in machining process. Even though cutting fluid improves the Productivity through the cooling, lubricating effects, its environmental impact is also increased according to the cutting fluid usage. The primary mechanism considered in this study is the spin-off motion of fluids away from rotating workpiece. In this study some parameters arc adopted to analyze the productivity(tool wear), environmental impact(mist diffusion rate). The results present talc criteria for the resonable cutting fluid usage quantitative1y to develop the environmentally conscious machining process.

A Study on the Cutting Characteristics of Ti-6Al-4V Alloy in Turning Operation (선삭가공시 Ti-6Al-4V 합금의 절삭특성에 관한 연구)

  • Park, Jong-Nam;Cho, Gyu-Jae;Lee, Seung-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.81-87
    • /
    • 2004
  • The titanium has many superior characteristics such as specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant. This study performed turning operation of Ti-6Al-4V alloy using the TiAlN coated tool which was treated with PVD. Experimental works were also executed to measure cutting force, chip figuration and surface roughness for different cutting conditions. As a result of study, tool wear was serious at the condition over 100m/min of cutting speed. The excellent cutting condition of cutting depth was at 1.0mm.

  • PDF

Machinability Evaluation and Cutting Condition Selection of Cellulose Acetate for Manufacturing of High-quality Spectacle Frames (고품위 안경테 제작을 위한 안경테 소재(Cellulose Acetate)의 가공성 평가 및 절삭조건 선정)

  • Kang, Ik-Soo;Lee, Seung-Yong;Choi, Hyun-Jin;Lee, Tae-Ho;Choi, Sung-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.20-24
    • /
    • 2012
  • The objective of this study is to investigate proper cutting conditions of cellulose acetate(CA) for eyewear frames. Various cutting experiments with variation of spindle speeds and feed rates are conducted to evaluate the machinability of CA. The machinability of CA materials were discussed in terms of the cutting forces, surface roughnesses and chip formations. The cutting conditions of high spindle speeds and the feed per tooth of less than 0.05mm are recommended considering the surface roughnesses and chip formations. Also, the correlation between the surface roughness and the chip formation is investigated. These results are able to be applied to design the high-speed machine tool of CA frame.