• Title/Summary/Keyword: Cutting Power

Search Result 434, Processing Time 0.024 seconds

Study on Spindle Motor's Power-Factor and Frictional Characteristics For Cutting Force Monitoring in a CNC Machine (CNC 공작기계의 절삭력 감지를 위한 주축모터의 역률 및 마찰특성에 관한 연구)

  • 홍성함;이병휘;허건수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.141-146
    • /
    • 2002
  • Real-time monitoring and control of the cutting force is essential for unmanned cutting process. Although the cutting force can be measured directly using tool dynamometers, their implementation is not feasible in industry due to high cost. Alternative approach is the cutting force estimation based on spindle drive models, but it requires the knowledge of their characteristics with the spindle speed variation. This paper investigates the power-factor and frictional characteristics of three-phase induction motors and determines its characteristics below and above the base speed, respectively. In order to realize the proposed cutting force monitoring system, a stand-alone DSP board was utilized. Its monitoring and control performance is evaluated in a CNC lathe.

  • PDF

Application of $CO_2$ High Power Laser to Cutting of Thick Steel Plates

  • Nagata, Yozo
    • Proceedings of the KWS Conference
    • /
    • 1992.10a
    • /
    • pp.21-31
    • /
    • 1992
  • CO2 laser had enabled accurate and effective cutting. But its application has been limited to thin and small parts. Development of a high power oscillator and oscillator built-in cutting machine have realized cutting of thick and large steel parts. This machine brings also possibility of fully automated cutting systems to practical steel parts such as for construction machinery.

  • PDF

An Unmanned Turning Process Technique Based on Spindle Motor Power Characteristics (주축 모터 출력 특성에 근거한 무인 선삭 가공 기술)

  • 박장호;허건수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.8-13
    • /
    • 2001
  • In the turning process, the feed is usually selected by a machining operator considering workpiece, cutting tool and depth of cut. Even if this selection can avoid power saturation or tool breakage, it is usually conservative compared to the capacity of the machine tools and can reduce the productivity significantly. This paper proposes a selection method of the feed and the reference cutting force based on MRR(material removal rate), maximum spindle power and specific energy. In order to estimate and control cutting force accurately in transient and steady state, this study utilizes a synthesized cutting force estimation method and a Fuzzy controller. The experimental results present that these systems can be useful for the FMS(flexible manufacturing system) and unmanned automation system.

  • PDF

Unmanned Turning Process Control Based on Spindle-Motor Power Characteristics (주축 모터 출력 특성에 근거한 무인 선삭 제어)

  • Pak, Chang-Ho;Hong, Sung-Hahm;Lee, Byeong-Huee;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1446-1452
    • /
    • 2002
  • In the turning process, the feed is usually selected by a machining operator considering workpiece, cutting tool and depth of cut. Even if this selection can avoid power saturation or tool breakage, it is usually conservative compared to the capacity of the machine tools and can reduce the productivity significantly. This paper proposes a selection method of the feed and the reference cutting force based on MRR(material removal rate), maximum spindle power and specific energy. In order to estimate and control cutting force accurately in transient and steady state, this study utilizes a synthesized cutting force estimation method and a Fuzzy controller. The experimental results show that these systems can be useful for the unmanned turning process.

Laser Cutting of Thick Diamond Films Using Low-Power Laser (저 출력 레이저를 이용한 다이아몬드 후막의 절단)

  • 박영준;백영준
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.140-144
    • /
    • 2000
  • Laser cutting of thick diamond films is studied using a low-power(10 W) copper vapor laser. Due to the existence of the saturation depth in laser cutting, thick diamond films are not easily cut by low-power lasers. In this study, we have adopted a low thermalconductivity underlayer of alumina and a heating stage (up to 500$^{\circ}C$ in air) to prevent the laser energy from consuming-out and, in turn, enhance the cutting efficiency. Aspect ratio increases twice fromm 3.5 to 7 when the alumina underlayer used. Adopting a heating stage also increases aspect ratio and more than 10 is obtained at higher temperatures than 400$^{\circ}C$. These results show that thick diamond films can be cut, with low-power lasers, simply by modifying the thermal property of underlayer.

  • PDF

Investigation of Cutting Characteristics in the Sharp Comer for the Case of Cutting of Inconel 718 Super-alloy Sheet Using High-power CW Nd:YAG Laser (고출력 CW Nd:YAG 레이저를 이용한 인코넬 718 판재 절단시 모서리부 절단 특성 분석)

  • Ahn, Dong-Gyu;Byun, Kyung-Won
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.90-96
    • /
    • 2008
  • The objective of this paper is to investigate the effects of the laser power, the material thickness, comer angles, and the loop size on the formation of the comer in the cutting of Inconel 718 super-alloy sheet using high-power CW Nd: YAG laser. In order to investigate the influence of comer angles and loop sizes on the melted area and the formation of comer in the sharp comer, angular cutting tests and loop cutting tests were carried out. The results of the angular cutting tests were shown that the melted area is minimized and the melting mode is changed from nose melting in the thickness direction to the secondary melting induced by the attached dross when the comer angle is $90^{\circ}$. Through the results of loop cutting tests, the variation of the melted area and the comer shape in the sharp comer according to the loop size were examined. In addition, it was shown that a proper loop size is approximately 3 mm. The results of above experiments will be reflected on the knowledge base to generate optimal cutting path of the laser.

A Study on Laser Assisted Machining for Silicon Nitride Ceramics (III) - Variation of the Main Cutting Force and Life of Cutting Tool by LAM of SSN and HIPSN - (질화규소 세라믹의 레이저 예열선삭에 관한 연구 (III) - SSN 및 HIPSN의 예열선삭시 절삭력 및 공구수명의 특성 -)

  • Kim, Jong-Do;Lee, Su-Jin;Kang, Tae-Young;Suh, Jeong;Lee, Jae-Hoon
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.35-39
    • /
    • 2010
  • Generally, ceramic material is very difficult to machine due to high strength and hardness. However, ceramic material can be machined at high temperature by plastic flow as metallic material due to the deterioration of the grain boundary glassy phase. Recently, a new method was developed to execute cutting process with CBN cutting tool by local heating of surface with laser. There are various parameters in LAM because it is a complex process with laser treatment and machining. During laser assisted machining, high power results in reducing of cutting force and increasing tool life, but excessive power brings oxidation of the surface. The effect of laser power, feed rate, cutting depth and etc. were investigated on the life of cutting tool. Chips were observed to find out suitable machining conditions. Chips of SSN had more flow-types than HIPSN. It means SSN is easier to machining. The life of cutting tool was increased with increasing laser power and decreasing feed rate and cutting depth.

A study on the Modeling of Tool Motion and High Accuracy Surface Generation by Use of Cutting Force Signal (절삭력 신호를 이용한 공구운동의 모델링과 고정도 표면생성에 관한 연구)

  • 김정두;이은복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1951-1962
    • /
    • 1993
  • The creation process of a typical machined surface is treated here as a dynamic system. An investigation is carried out to establish a relationship between the characteristics of cutting force fluctuations that cause vibration response of the tool-workpiece system and the formation of surface in face cutting by sintered carbide cutting tool. Cutting force is measured and analyzed in frequency domain. The power spectral densities of cutting force give a useful information in surface generation and it can be used to find out the control factor of surface roughness. The terms, PSD ratio & Normalized spindle frequency PSD, are defined and when the value of power in spindle frequency is absolutely little but relatively large, it is obtained high accuracy surface roughness. The aim of this research is to find surface profile by measured and analyzed cutting force signals. The simulation of surface generation gives the comprechension of its mechanism and help to predict and control the surface quality. In this study, it is suggested what informations about surface generation can be acquired from the cuttuing force signal and an way of generating a better surface.

Influence of Process Parameters on Characteristics of the Cut Surface for the Case of Cutting of CSP IN Sheet Using High Power CW Nd:YAG Laser (고출력 CW Nd:YAG 레이저를 이용한 CSP 1N 박판재 절단시 공정변수의 절단표면특성에 미치는 영향)

  • 안동규;김민수;이상훈;유영태;박형준
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.286-291
    • /
    • 2004
  • The objective of this research work is to investigate the influence of process parameters, such as power of laser, travel speed of laser and material thickness, on roughness and striation of the cut surface for the case of cutting of CSP 1N sheet using high power Nd:YAG laser with continuous wave(CW). In order to find the practical cutting region and the relationship between process parameters on the roughness and the striation, several laser cutting experiments are carried out. From the results of experiments, the allowable cutting region and an optimal cutting speed for each cutting condition have been obtained to improve the quality of the cut surface. In addition, it has been shown that the surface roughness is related to the number of striation and depth of valley of the cut surface.

  • PDF

Multi-layer Glass Cutting by Femtosecond Laser (극초단 레이저를 이용한 겹침 평판유리 절단)

  • Shin, Hyun-Myung;Lee, Young-Min;Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.382-386
    • /
    • 2012
  • A femtosecond laser with 775nm central wavelength and 150 fs of temporal pulse width was used for multi layered glass cutting applications. Ultrashort pulse was effectively used for clean glass cutting with $50{\mu}m$ depth and minimum cutting width. Laser beam was split to two stages and focused on the top surfaces of each layer. Ablation threshold of used glass was measured to be $2.59J/cm^2$. In experiments, 200mW laser power and 1mm/s scanning speed was used for preliminary experiment. Air gap was the major defect occurring parameter and laser power was less sensitive to glass cutting in the experiment. The maximum cutting speed was measured to be 60mm/min with 2kHz, however, Maximum 3m/min cutting speed can be achievable with a commercially available laser with 100kHz.