• Title/Summary/Keyword: Cutting Pattern Generation

Search Result 29, Processing Time 0.03 seconds

A Study on the Geodesic Line Algorithms for Cutting Pattern Generation of Membrane Structures (막 구조물의 재단도 생성을 위한 지오데식 라인 알고리즘에 관한 연구)

  • 배종효;한상을
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.357-364
    • /
    • 2000
  • The three main processes involved in the design of stressed membrane surface are surface form-finding, stress analysis and cutting pattern generation. The last process, cutting pattern generation, is considered as a very important procedure in the aspect of the practical design for the fabric membrane surface. In this paper, The cutting pattern generation technique using the geodesic line algorithms is first introduced. And the numerical examples resulting from this technique are presented. Cable elements are used for the approximating membrane surface and two kinds of model, square line and central line model, are used in pattern generation. Finally, a number of different cutting pattern generation for the same membrane surface is carried out and the numerical results are compared each

  • PDF

A Study on The Search of Geodesic Line and Cuting Pattern Generation of Membrane Structures (막 구조물의 측지선 탐색과 재단도 작성에 관한 연구)

  • Jeon Jin-Hyung;Jeong Eul-Seok;Shon Su-Deok;Kim Seung-Deog
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.325-332
    • /
    • 2006
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation, because the material property has strong axial stiffness, but little bending stiffness. The problem of cutting pattern is highly varied in their size, curvature and material stiffness. So, the approximation inherent in cutting pattern generation methods is quite different. Therefore the ordinary computer software of structural analysis & design is not suitable for membrane structures. In this study, we develop the program for cutting pattern generation using geodesic line, and investigate the result of example's cutting pattern in detail.

  • PDF

A Study on The Cutting Pattern Generation of Membrane Structures and Loss Ratio of Febrics According to the Curvature (막구조물의 재단도 작성과 곡률 변화에 따른 손실률에 관한 연구)

  • Jeon, Jin-Hyung;Jeong, Eul-Seok;Shon, Su-Deok;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.205-213
    • /
    • 2006
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation, because the material property has strong axial stiffness, but little bending stiffness. The problem of cutting pattern is highly varied in their size, curvature and material stiffness. So, the approximation inherent in cooing pattern generation methods is quite different. Therefore the ordinary computer software of structural analysis & design is not suitable for membrane structures. In this study, we develop the program for cutting pattern generation using geodesic line, and investigate the result of example's cutting pattern in detail.

  • PDF

A Study on Cutting Pattern Generation of Membrane Structures by Using Geometric Line (막 구조물의 측지선을 이용한 재단도 생성에 관한 연구)

  • Ahn, Sang-Gil;Shon, Su-Deok;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.125-132
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation. In shape finding, membrane structures are unstable structures initially. These soft structures need to be introduced initial stresses because of its initial unstable state, and it happens large deformation phenomenon. And also there are highly varied in their size, curvature and material stiffness. So, the approximation inherent in cutting pattern generation methods is quite different. Therefore, in this study, to find the structural shape after large deformation caused by Initial stress, we need the shape analysis considering geometric nonlinear ten And the geodesic line on surface of initial equilibrium shape and the cutting pattern generation using the geodesic line is introduced.

  • PDF

A Study on The Cutting Pattern Generation of Membrane Structures and The Loss-Ratio of Material (막 구조물의 재단도 작성과 막재의 손실률에 관한 연구)

  • Shon, Su-Deok;Jeong, Eul-Seok;Kim, Seung-Deog
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.117-127
    • /
    • 2006
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation, because the material property has strong axial stiffness, but little bending stiffness. The problem of cooing pattern is highly varied in their size, curvature and material stiffness. So, the approximation inherent in cutting pattern generation methods is quite different. Therefore the ordinary computer software of structural analysis & design is not suitable for membrane structures. In this study, we develop the program for cooing pattern generation using geodesic line, and investigate the result of example's cooing pattern in detail.

  • PDF

Development of PC Controled Automatic Cutting System (PC를 이용한 철판 자동절단시스템 개발)

  • Kim, Sang-Hun;Chung, Kyung-Ryul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.29-37
    • /
    • 1996
  • In this study, PC controlled CNC automatic cutting system is developed. Technological introduction of the control process and the computer programming has made possible not only the automatic control for cutting processing unit but also the easy-to-use graphic software that enables the cutting process. This program involves shape part drawing and amendment, pattern reading and saving, reading Autocad file, nesting process, kerf compensation, automatic cutting path generation, NC file conversion and motor control. Software is devided into 3 modules for easy work. First step enables drawing, amendment and pattern making, followed by automatic nesting and cutting path generation with kerf compensation. In the final step, drawing data is transmitted for the resulting automatic cutting processes. This software would be applicated in gas cutting and textile cutting so that it improves the productivity of cutting process.

  • PDF

A Study on the Cutting Pattern Generation of the Membrane Structures Using Triangular Re-mesh (막 구조물의 삼각형 Re-mesh 패턴을 적용한 재단도 생성에 관한 연구)

  • Jeon, Jin-Hyung;Shon, Su-Deok;Jeong, Eul-Seok;Kim, Seung-Deog
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.153-165
    • /
    • 2007
  • Flexible structure uses a material with strong axial stiffness and small bending stiffness as its major structural material so it is very sensitive to initial stiffness. Therefore, the self-formation process which accomplishes a form in the natural world is grasped and it is as well investigated and classified the type of modeling techniques which are available to find the shapes of soft structures. Accordingly, for analysis and design of flexible structure, three-step analysis such as shape analysis, stress-deformation analysis, cutting pattern generation and constructional analysis is required unlike the existing stiff structure. In this study, suggest that minimize the error of side curvatures by the triangle Re-mesh pattern and draw the cutting pattern generation.

  • PDF

A Shape Finding and Cutting Pattern Determination for Membrane Structures (막 구조물에 관한 형상 탐색과 재단도 결정법)

  • Choi, Ho;Lee, Jang-Bog;Kim, Jae-Yeol;Sur, Sam-Uel;Kwon, Taek-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.175-182
    • /
    • 1998
  • The object of this study is shape finding and cutting pattern generation of membrane structures under the following assumptions : (1) material is linearly elastic (2) stress state is plane stress. Cable and membrane structures should introduce the nonlinear analysis considering geometric nonlinearity because these structures deform largely under the external loads. The analysis procedure is consisted of three steps considering geometric nonlinearity unlike any other structures. First step is the shape finding analysis to determine the initial equilibrium shape. Second step is the stress-deformation analysis to investigate the behaviors of structures under various external loads. Once a satisfactory shape has been found, a cutting pattern based on the shape finding analysis may be generated from the view point of construction. In this paper, (1) shape finding analysis formulation and an example, (2) cutting pattern determination procedure using weighted least-square minimization flattening method and some results are presented.

  • PDF

A Study on the Cutting Pattern Determination for Fabric Structures (막 구조물의 재단 패턴 결정에 관한 연구)

  • Choi, Ho;Lee, Jang-Bog;Kim, Jae-Yeol;Sur, Sam-Uel;Kwon, Taek-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.266-273
    • /
    • 1998
  • The object of this study is shape finding and cutting pattern generation of membrane structures under the following assumptions: (1) material is linearly elastic (2) stress state is plane stress. Cable and membrane structures should introduce the nonlinear analysis considering geometric nonlinearity because these structures deform largely under the external loads. The analysis procedure is consisted of three steps considering geometric nonlinearity unlike any other structures. First step is the shape finding analysis to determine the initial equilibrium shape. Second step is the stress-deformation analysis to investigate the behaviors of structures under various external loads. Once a satisfactory shape has been found, a cutting pattern based on the shape finding analysis may be generated from the view point of construction. In this paper, after shape finding analysis, cutting pattern determination procedure using weighted least-square minimization flattening method and some results are presented.

  • PDF

A Study on Cutting Pattern Generation of Membrane Structures Using Spline Curves (스플라인 곡선을 이용한 막구조물의 재단도 작성에 관한 연구)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.109-119
    • /
    • 2012
  • For membrane structure, there are three main steps in design and construction, which are form finding, statistical load analysis, and cutting patterning. Unlike the first two stages, the step of cutting pattern involves the translation of a double-curved surface in 3D space into a 2D plane with minimal error. For economic reasons, the seam lines of generated cutting patterns rely greatly on the geodesic line. Generally, as searching regions of the seam line are plane elements in the step of shape analysis, the seam line is not a smooth curve, but an irregularly divided straight line. So, it is how we make an irregularly divided straight line a smooth curve that defines the quality of the pattern. Accordingly, in this paper, we analyzed interpolation schemes using spline, and apply these methods to cutting pattern generation on the curved surface. To generate the pattern, three types of spline functions were used, i.e., cubic spline function, B-spline, and least-square spline approximation, and simple model and the catenary-shaped membrane was adopted to examine the result of generation. The result of comparing the approximation curves by the number of elements and the number of extracted nodes of simple model revealed that the seam line for less number of extracted nodes with large number of elements were more efficient, and the least-square spline approximation provided smoother seam line than other methods.