• 제목/요약/키워드: Cutting Model

검색결과 899건 처리시간 0.024초

저강성 공구를 이용한 절삭에서의 채터 진동 (The chatter vibration in metal cutting using the low stiffness tool)

  • 김정석;이병호
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.424-432
    • /
    • 1989
  • 본 연구에서는 정적절삭실험으로 결정될수 있는 절삭변수로 표현되는 동적 절삭력을 해석적으로 구한다. 이 모델은 3차원 절삭형태에도 적용될 수 있는 특성을 갖는다. 새로이 제안된 절삭 과정의 모델은 동적절삭상태에서 절삭력 합력의 변화를 고려한 절삭기구를 통해 이루어지며, 해석적으로 한계절삭폭을 구한다. 실험적 규명 은 채터진동이 발생하지 않는 한계절삭 공작물에 비해 공구의 강성이 상대적으로 적은 보링(boring)작업에서 발생하는 것을 대상으로 하였다.

Force Prediction and Stress Analysis of a Twist Drill from Tool Geometry and Cutting Conditions

  • Kim, Kug-Weon;Ahn, Tae-Kil
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권1호
    • /
    • pp.65-72
    • /
    • 2005
  • Drilling process is one of the most common, yet complex operations among manufacturing processes. The performance of a drill is largely dependent upon drilling forces, Many researches focused on the effects of drill parameters on drilling forces. In this paper, an effective theoretical model to predict thrust and torque in drilling is presented. Also, with the predicted forces, the stress analysis of the drill tool is performed by the finite element method. The model uses the oblique cutting model for the cutting lips and the orthogonal cutting model for the chisel edge. Thrust and torque are calculated analytically without resorting to any drilling experiment, only by tool geometry, cutting conditions and material properties. The stress analysis is performed by the commercial FEM program ANSYS. The geometric modeling and the mesh generation of a twist drill are performed automatically. From the study, the effects of the variation of the geometric features of the drill and of the cutting conditions of the drilling on the drilling forces and the stress distributions in the tool are calculated analytically, which can be applicable for designing optimal drill geometry and for improving the drilling process.

폴리우레탄폼 절삭에서 절삭력을 고려한 공구 오프셋이 가공정도에 미치는 영향에 관한 연구 (A Study of an Effect of Tool Offset on Cutting Precision Considering Cutting Force in Polyurethane Foam Cutting)

  • 민세홍;김희송
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.3018-3025
    • /
    • 2000
  • It is possible to shorten developing process by making model using polyurethane foam in the area of automobile development process, etc. However, this skill is too difficult to be of practical use because machining is not easy due to characteristic of polyurethane foam. Domestic and foreign automobile company use clay, polyurethane foam. etc,, those are easy to handle and to make model after completing design sketch. But these materials is difficult to the machined and be worked by humans hand, There are so many difficult problem for machining by making model using polyurethane foam since cutting of elastic body like polyurethan foam has never been studied. Therefore, in this study, it is investigated to measured cutting force that is generated in case of polyurethane foam machining, and to make systematize tool compensation of polyurethane foam cutting work on automobile model by modification of tool offset method on existing steel.

주축 변위 측정을 통한 공구 마모 진단에 관한 연구 (A Study on Tool Wear Diagnosis by Measuring Spindle Displacement)

  • 김진현;김일해;장동영;한동철
    • 한국정밀공학회지
    • /
    • 제20권1호
    • /
    • pp.222-228
    • /
    • 2003
  • A reliable tool wear monitoring technique is the one of important aspects for achieving an integrated and self-adjusting manufacturing system. In this paper, a tool wear estimation approach for turning is proposed. This approach uses the model of cutting force, spindle displacement and their relation. A series of experiments were conducted by designing experimental techniques to determine the relationship between flank wear and cutting force coefficient as well as cutting parameters such as cutting speed, depth of cut and feed. The proposed model performance has shown that the spindle displacement model predicts tool wear with high accuracy and spindle displacement signal is possible to replace cutting force signal.

주축 변위 측정을 통한 공구 마모 진단에 관한 연구 (A Study on Tool Wear Diagnosis by Measuring Spindle Displacement)

  • 김진현;김일해;장동영;한동철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.459-464
    • /
    • 2001
  • A reliable tool wear monitoring technique is the one of important aspects for achieving an integrated and self-adjusting manufacturing system. In this paper, a tool wear estimation approach for turning is proposed. This approach uses the model of cutting force, spindle displacement and their relation. A series of experiments were conducted by designing experimental techniques to determine the relationship between flank wear and cutting force coefficient as well as cutting parameters such as cutting speed, depth of cut and feed. The proposed model performance has shown that the spindle displacement model predicts tool wear with high accuracy and spindle displacement signal is possible to replace cutting force signal.

  • PDF

향상된 절삭력 모델 기반의 NC 코드 최적화 (NC Code Optimization Based on an Improved Cutting Force Model)

  • 이한울;고정훈;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.37-42
    • /
    • 1997
  • Off-line feed rate scheduling is an advanced methodology to automatically determine optimum feed rates for the optimization of NC code. However, the present feed rate scheduling systems have lim~tations to generate the optimized NC codes because they use the material removal rate or non-generalized cutting force model. In this paper, a feed rate scheduling system based on an improved cutting force model that can predrct cutting forces exactly in general machining was presented. Original blocks of NC code were divided to small ones with the modified feed rates to adjust the peak value of cutting forces to a constant vale. The characteristic of acceleration and deceleration for a given machrne tool was considered when off-line feed rate scheduhng was performed. Software for the NC code optimization was developed and applied to pocket machining simulation.

  • PDF

선반작업에서 직교계획법을 이용한 표면 거칠기 예측모델에 관한 연구 (A Study on the Prediction Model of Surface Roughness by the Orthogonal Design for Turning Process)

  • 홍민성;염철만
    • 한국공작기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.89-94
    • /
    • 2001
  • This paper presents a study of surface roughness prediction model by orthogonal design in turning operation. Regression analysis technique has been used to study the effects of the cutting parameters such as cutting speed, feed depth of cut, and nose radius on surface roughness. An effect of interaction between two parameters on surface roughness has also been investigated. The experiment has been conducted using coated tungsten carbide inserts without cutting fluid. The reliability of the surface roughness model as a function of the cutting parameters has been estimated. The results show that the experimental design used in turning process is a method to estimate the effects of cutting parameters on sur-face roughness.

  • PDF

Dual-PDA를 이용한 절삭유 에어로졸 특성분석에 관한 연구(II) - 선삭공정의 절삭유 에어로졸 예측 (A Study on the Characteristics Analysis of Cutting Fluid Aerosol Using Dual-PDA System(II) - for Cutting Fluid Aerosol Prediction in Turning Process)

  • 정의식;황덕철;우창기;황준
    • 한국분무공학회지
    • /
    • 제10권2호
    • /
    • pp.32-40
    • /
    • 2005
  • This paper presents the analytical approaches to predict cutting fluid aerosol formation characteristics in machining process. The prediction model which is based on the rotary atomization theory analyzes aerosol behaviors in terms of size and concentration. Experiments were tarried out to verify the aerosol formation prediction model under various operational conditions. The experimental results which are obtained by Dual-PDA measurement show resonable agreement with prediction results of aerosol concentration. This study can be provided as a basis to estimate and control the hazardous cutting fluid aerosol in machining process in view of environmental consciousness.

  • PDF

점소성 유한요소법에 의한 이차원 절삭의 구성인선 해석 (Built-Up Edge Analysis of Orthogonal Cutting By Visco-Plastic Finite Element Method)

  • 김동식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1995년도 추계학술대회 논문집
    • /
    • pp.60-63
    • /
    • 1995
  • The behavior of the work materials in the chip-tool interface in extremely high strain rates and temperatures is more that of viscous liquids than that of normal solid metals. In these circumstances the principles of fluid mechanics can be invoked to describe the metal flow in the neighborhood of the cutting edge. In the present paper an Eulerian finite element model is presented that simulates metal flow in the vicinity of the cutting edge when machining a low carbon steel with carbide cutting tool. The work material is assumed to obey visco-plastic (Bingham solid) constitutive law and Von Mises criterion. Heat generation is included in the model, assuming adiabatic conditions within each element. the mechanical and thermal properties of the work material are accepted to vary with the temperature. The model is based on the virtual work-stream function formulation, emphasis is given on analyzing the formation of the stagnant metal zone ahead of the cutting edge. The model predicts flow field characteristics such as material velocity effective stress and strain-rate distributions as well as built-up layer configuration

  • PDF

Z-Map모델을 이용한 3차원 CNC가공계획 및 절삭시뮬레이션에 관한 연구 (A study on the 3-D CNC cutting planning and simulation by Z-Map model)

  • 송수용;김석일
    • 한국정밀공학회지
    • /
    • 제13권5호
    • /
    • pp.115-121
    • /
    • 1996
  • Recently, the Z-Map model has been used widely to represent the three dimensional geometric shape and to achieve the cross-section and point evaluation of the shape. In this paper, the CNC cutting planning and simulation modules for product with three dimensional geometric shape are realized based on the Z-Map model. The realized system has the various capabilities related to the automatic generation of tool path for the rough and finish cutting processes, the automatic elimination of overcut, the automatic generation of CNC program for a machining center and the cutting simulation. Especially, the overcut-free tool path is obtained by using the CL Z-Map models which are composed of the offset surfaces of the geometric shape of product.

  • PDF