• 제목/요약/키워드: Cutting Layer

검색결과 255건 처리시간 0.025초

금형의 고정도ㆍ고능률 가공기술 (Advanced Machining Technology for Die Manufacturing)

  • 김정석;이득우;정융호;강명창;이기용;김경균;김석원
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.48-68
    • /
    • 2000
  • The high-speed machining technology of difficult-to-cut material is needed to achieve the high-efficiency of die manufacturing. The high-speed machining is applied in automobile, airplane and electricityㆍelectro industry etc, because it can improve machining efficiency and productivity with high speed, high power and high rotation. In this study, high speed machinability, tool wear characteristics and its monitoring, characteristics of damaged layer, machinability of difficult-to-cut material, characteristics of a free curved surface and method of CAD/CAM system were introduced to acquire the shortening of machining time, the improvement of machining efficiency and the high quality of machined surface. Therefore, we establish the stabilization condition of difficult-to-cut material machining and present the optimal cutting condition for high-efficiency cutting.

  • PDF

코팅공구의 절삭성능에 관한 연구 (A Study on the Coated Characteristics of Ceramic Tools)

  • 유봉환
    • 한국생산제조학회지
    • /
    • 제9권1호
    • /
    • pp.96-101
    • /
    • 2000
  • Ceramic, PCD and CBN tools are available for the difficult-to-cut-materials such as hardened carbon tool steel, stainless steel, Inconel 718 and etc.. Ceramic toolsare likely to be chipped and abruptly broken before the appearance of normal wear in turning. Ther2efore ceramic tools are suitable for continuous cut in turning not for intermittent in milling. In this study, TiN/TiCN multi-layer coated ceramic tools were found to restrain the chipping, breaking and early fracture and to increase the critical cutting speed owing to TiN/TiCN multi-layer coating in Arc Ion Plating of PVD method.

  • PDF

AlTiN 코팅 층수에 따른 볼 엔드밀의 마모특성에 관한 연구 (A Study on the Wear Characteristics of the Ball End Mill According to the AlTiN Coated Layers)

  • 조규재;이승철
    • 한국정밀공학회지
    • /
    • 제27권8호
    • /
    • pp.54-61
    • /
    • 2010
  • In this research KP-4, one of the plastic mold steels, was coated with the AlTiN from one layer to four layers by the PVD method in the $\Phi$ cemented carbide ball end mill. Coated KP-4 was processed with various conditions. For example, slope of $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ the spindle rotation speed was changed from 10,000rpm to 16,000rpm, the tool feeding speed was changed from 1,300mm/min to 1,700mm/min, the depth of cut was also changed from 0.3mm to 0.9mm, and etc. Cutting component force according to the coating layer number, surface roughness, and the wear of tool were studied.

통꾸밈량에 대한 화선 변화에 관한 연구 (A Study on a change of image in packing quantity)

  • 곽선엽
    • 한국인쇄학회지
    • /
    • 제9권1호
    • /
    • pp.45-51
    • /
    • 1991
  • Commercially available paper stickers, electrostatic stickers, and metal sticker generally involve process of printing on the substrate and die-cutting to peel the sticker off the release paper. Using plastisol ink and multi-layer screen printing technique, a process of non die-cutting sticker with same image on both sides was developed. It was also possible to prevent color mixing phenomena at image edge part by printing narrow lines of black ink along the borderline.

  • PDF

Er:YAG laser와 Conventional bur의 유치와 영구치 치아삭제효과 비교 (CUTTING EFFICACY OF Er:YAG LASER AND CONVENTIONAL BUR IN DECIDUOUS AND PERMANENT TEETH)

  • 박인천;이창섭;이난영;이상호
    • 대한소아치과학회지
    • /
    • 제30권2호
    • /
    • pp.272-285
    • /
    • 2003
  • 본 연구는 유치와 영구치의 법랑질과 상아질을 bur를 이용하여 삭제한 경우와 Er:YAG laser를 이용하여 삭제한 경우 형성되는 와동의 미세학적인 형태를 관찰하고 삭제 효과를 비교하기 위함이다. 유치와 영구치의 법랑질과 상아질을 #330 bur 와 5 Hz의 150mJ, 200mJ, 250mJ 그리고 300mJ 조사세기로 Er:YAG laser를 조사하여 1mm 두께의 표본이 삭제되는 시간을 측정하였다. 또한 삭제된 표면을 관찰하기 위해서 유치와 영구치 각각 5개에 #330 bur와 5Hz의 150mJ, 200mJ, 250mJ, 300mJ 조사세기로 Er:YAG laser를 1초동안 조사하여 횡단면과 종단면으로 나누어 관찰하였다. 1. Er:YAG 레이저를 사용하여 삭제한 경우 유치와 영구치, 법랑질과 상아질 모두 bur를 이용하여 삭제한 경우보다 삭제 시간이 길었다(P<0.05). 2. 법랑질을 삭제할 경우 bur를 사용시 영구치보다 유치에서 삭제시간이 더 길었다. 그러나 Er:YAG 레이저 사용시에는 유치와 영구치 사이에 유의한 차이를 보이지 않았다(P>0.05). 3. 상아질을 삭제할 경우 bur사용시 영구치에서 삭제시간이 더 길었으며 Er:YAG레이저 사용시 150mJ, 5Hz에서는 유의하게 영구치에서 더 긴 삭제시간을 보였으나 나머지 다른 출력의 레이저에서는 유의한 차이를 보이지 않았다(P<0.05). 4. SEM 관찰시 bur를 이용하여 치아를 삭제한 경우 치질유형에 관계없이 경계가 비교적 명확한 와동 변연을 보였다. 그러나 와동 변연에서 균열과 $10-100{\mu}m$의 microchipping이 관찰되었다. 와동벽은 회전식 bur에 따른 줄무늬 모양의 표면을 보이고 있었다. 편평한 와동저를 관찰할 수 있었으며 역시 와동벽과 마찬가지로 거친 표면을 보이고 있었다. 5. 레이저를 이용하여 치아를 삭제한 경우 와동의 변연이 명확하고 날카롭게 형성되었다. 와동의 상부의 직경은 조사에너지와 pulse repetition rate가 커질수록 점차 증가하였다. 와동벽은 불규칙하게 배열되었으며 와동의 변연이나 바닥에 비해 불규칙한 양상을 보여주었다. 와동저는 일반적으로 둥근 원추형이며 비교적 부드러운 표면을 보였다. 이상의 결과를 요약해보면 Er:YAG 레이저는 유치와 영구치에서 비슷한 삭제 시간이 소요되었다. 그러나, 법랑질보다는 상아질에 더 효과적인 것으로 나타났다. 실험 결과 레이저를 이용하여 치아를 삭제한 경우 bur사용에 비해 3배 이상의 삭제시간이 소요되었다. 그러나, 레이저를 이용하여 치아를 삭제할 경우 깨끗한 와동 변연이 형성되고 smear layer가 형성되지 않는 점이 장점으로 사료된다.

  • PDF

절삭가공시 잔류응력에 관한 연구 (A Study on Residual stress at Cutting work)

  • 주호윤
    • 한국생산제조학회지
    • /
    • 제6권3호
    • /
    • pp.111-117
    • /
    • 1997
  • The sudden-stop apparatus is made to measure the residual stress of the infinitesimal area at the turning work surface by using the X-ray stress apparatus. This study is trued to make the cutting work the instantaneous stopping state in the normal working state. The behaviour of work material near the tool is estimated. The estimation method is that the distribution of residual stress can be also measured. The object is to clarify and control the mechanism to leave the adequate stress of the finishing surface. It's beginning is due to observe the occurrence state of the residual stress at the cutting work. The result obtained by this study is as follows. The chips are not separated from the work materials at all the cutting experiments of built-up edges or the shearing areas etc. which can be precisely observed by using the sudden-stop apparatus. The strain of movable system which can be seen at the part of working layer means the size of strain. This experiment proves that the working strain should be lessened to make the size of strain control the residual stress happened at the cutting surface.

  • PDF

Direct Slicing with Optimum Number of Contour Points

  • Gupta Tanay;Chandila Parveen Kumar;Tripathi Vyomkesh;Choudhury Asimava Roy
    • International Journal of CAD/CAM
    • /
    • 제4권1호
    • /
    • pp.33-45
    • /
    • 2004
  • In this work, a rational procedure has been formulated for the selection of points approximating slice contours cut in LOM (Laminated Object manufacturing) with first order approximation. It is suggested that the number of points representing a slice contour can be 'minimised' or 'optmised' by equating the horizontal chordal deviation (HCD) to the user-defined surface form tolerance. It has been shown that such optimization leads to substantial reduction in slice height calculations and NC codes file size for cutting out the slices. Due to optimization, the number of contour points varies from layer to layer, so that points on successive layer contours have to be matched by four sided ruled surface patches and triangular patches. The technological problems associated with the cutting out of triangular patches have been addressed. A robust algorithm has been developed for the determination of slice height for optimum and arbitrary numbers of contour points with different strategies for error calculations. It has been shown that optimisation may even lead to detection and appropriate representation of elusive surface features. An index of optimisation has been defined and calculations of the same have been tabulated.

$TiC-A1_2O_3$ 피복초경공구의 최적피복두께에 관한 연구 (A Study on the Optimum coating thickness of $TiC-A1_2O_3$ coated cemented carbide tool)

  • 김정두
    • 기술사
    • /
    • 제21권1호
    • /
    • pp.5-12
    • /
    • 1988
  • The purpose of this paper is to investigate on the optimum coating thickness layer of TiC-Al$_2$O$_3$ coated cemented carbide tool. Chemical Vapor Deposition (CVD) of a thick film of TiC-A1$_2$O$_3$ on a cemented carbide produces an intermediate layer, $1.5mutextrm{m}$, 4.5${\mu}{\textrm}{m}$, 7.5${\mu}{\textrm}{m}$ 10.5${\mu}{\textrm}{m}$, 4 kind of TiC between the substrate and the $1.5mutextrm{m}$ constant thick A1$_2$O$_3$ coating. Experiments were carried out with the test relationship between coating thickness and shear angle, surface roughness, cutting force, microphotograph of crater wear, flank wear, tool life. From the experimental results, it was found that the optimum coating thickness of TiC-A1$_2$O$_3$ is 6${\mu}{\textrm}{m}$. Although the coating thickness layer 9${\mu}{\textrm}{m}$. 12${\mu}{\textrm}{m}$ have a much loger tool wear than an 3${\mu}{\textrm}{m}$, 6${\mu}{\textrm}{m}$ coating tool in cutting condition feed 0.05mm/rev, and the condition of feed 0.2mm/rev, 0.3mm/rev has upon in the shot time phenomenon of chipping.

  • PDF

An Adaptive Slicing Algorithm for Profiled Edge laminae Tooling

  • Yoo, Seung-Ryeol;Walczyk, Daniel
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권3호
    • /
    • pp.64-70
    • /
    • 2007
  • Of all the rapid tooling (RT) methods currently available, thick-layer laminated tooling is the most suitable for large-scale, low-cost dies and molds. Currently, the determination of a lamina's contour or profile and the associated slicing algorithms are based on existing rapid prototyping (RP) data manipulation technology. This paper presents a new adaptive slicing algorithm developed exclusively for profiled edge laminae (PEL) tooling PEL tooling is a thick-layer RT technique that involves the assembly of an array of laminae, whose top edges are simultaneously profiled and beveled using a line-of-sight cutting method based on a CAD model of the intended tool surface. The cutting profiles are based on the intersection curve obtained directly from the CAD model to ensure geometrical accuracy. The slicing algorithm determines the lamina thicknesses that minimize the dimensional error using a new tool shape error index. At the same time, the algorithm considers the available lamination thicknesses and desired lamina interface locations. We demonstrate the new slicing algorithm by developing a simple industrial PEL tool based on a CAD part shape.