• Title/Summary/Keyword: Cutting Force Control

Search Result 175, Processing Time 0.024 seconds

Thrust Force Estimation using Flexible Neural Networks

  • Kim, Myeong-Hee;Shigeyasu Kawaji;Masaki Arao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.47.1-47
    • /
    • 2001
  • The drilling process has a great importance for the production technology due to its widerspread use in the manufacturing industry. In order to enhance a maximum production rate and prevent the drill from the damage, it is important to monitor and control the drilling system. Thrust force and cutting torque are the main output variables in the design of drilling control systems. In this paper, an alternative estimation method of thrust force by using flexible neural networks is proposed. Flexible neural network uses the sigmoid activation function with adjustable parameter in order to enhance the approximation accuracy ...

  • PDF

Critical thrust force and feed rate determination in drilling of GFRP laminate with backup plate

  • Heidary, Hossein;Mehrpouya, Mohammad A.;Saghafi, Hamed;Minak, Giangiacomo
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.631-640
    • /
    • 2020
  • Using backup plate is one of the most commonly used methods to decrease drilling-induced delamination of composite laminates. It has been shown that, the size of the delamination zone is related to the vertical element of cutting force named as thrust force. Also, direct control of thrust force is not a routine task, because, it depends on both drilling parameters and mechanical properties of the composite laminate. In this research, critical feed rate and thrust force are predicted analytically for delamination initiation in drilling of composite laminates with backup plate. Three common theories, linear elastic fracture mechanics, classical laminated plate and mechanics of oblique cutting, are used to model the problem. Based on the proposed analytical model, the effect of drill radius, chisel edge size, and backup plate size on the critical thrust force and feed rate are investigated. Experimental tests were carried out to prove analytical model.

Stability Analysis According to Material Alteration on Micro Stage for Micro Cutting Machine (재질 변화에 따른 초정밀가공기용 마이크로 스테이지의 안정성 해석)

  • 김재열;곽이구;김항우
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.52-57
    • /
    • 2003
  • In this paper, stability of ultra precision cutting unit is analyzed and this unit is the kernel unit in ultra precision processing machine. According to alteration of shape and material about hinge, stability investigation is performed Through this stability investigation, trial and error is reduced in design and manufacture, at the same time, we are accumulated foundation data for unit control.

Estimation of End Milling Depth of Cuts Using the Cutting Force (절삭력을 이용한 엔드밀링 절입깊이 추정)

  • 최종근;양민상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1033-1037
    • /
    • 1997
  • In the end milling process, the information of axial and depths of cut plays an important role in adaptive control systems for precision machining and tool monitoring systems for unmanned machining. In general, it is not easy to know the depths of cut due to irregular shape of workpieces, inaccurate positioning of them on the table of machine tool and machining error in previous cutting. In addition to, even they are informed, it is difficult to match the individual position of the cutter on the varying shape of the work material. This work suggest an algorithm estimating the depths of cut based on cutting force sigal. The proposed algorithm can be applied in more extensive cutting situations, for example, presence of the tool wear, variation of work material hardness, etc.

  • PDF

The development of the high speed & intellectual Line Center (초고속 Line Center의 구조설계에 관한 연구)

  • 송희남;유태봉;강경호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.479-482
    • /
    • 2000
  • To complite the high speed cutting system, It should be solved some problems, to make light the weight of mechanism for feedrate, develop the Linear motor that bas more power, high speed control system, and high speed cutting tools, nowadays, although many high speed cutting machine is to be built by some machine maker ,they have same problems, in this study, developed the system ball screw type before the feedrate mechanism for linear motor ,so we make the basic system for Line Cents . through that, it is limited to reduce the weight of frame and their frame is to be designed differently each other to reach the purpose special material or strucutre should be contrived.

  • PDF

Stability Analysis of a Micro Stage for Micro Cutting Machine with Various Hinge Type and Material Transformation (초정밀 가공기용 마이크로 스테이지의 힌지 형상과 재질 변화에 따른 안정성 해석)

  • Kim, Jae-Yeol;Kwak, Yi-Gu;Yoo, Sin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.233-240
    • /
    • 2003
  • Recently, the world are preparing for new revolution, called as If (Information Technology), NT (Nano-Technology), and BT (Bio-Technology). NT can be applied to various fields such as semiconductor-micro technology. Ultra precision processing is required for NT in the field of mechanical engineering. Recently, together with radical advancement of electronic and photonics industry, necessity of ultra precision processing is on the increase for the manufacture of various kernel parts. Therefore, in this paper, stability of ultra precision cutting unit is investigated, this unit is the kernel unit in ultra precision processing machine. According to alteration of shape and material about hinge, stability investigation is performed. In this paper, hinge shapes of micro stage in UPCU(Ultra Precision Cutting Unit) are designed as two types, where, hinge shapes are composed of round and rectangularity. Elasticity and strength are analyzed about micro stage, according to hinge shapes, by FE analysis. Micro stage in ultra precision processing machine has to keep hinge shape under cutting condition with 3-component force (cutting component, axial component, radial component) and to reduce modification against cutting force. Then we investigated its elasticity and its strength against these conditions. Material of micro stage is generally used to duralumin with small thermal deformation. But, stability of micro stage is investigated, according to elasticity and strength due to various materials, by FE analysis. Where, Used materials are composed of aluminum of low strength and cooper of medium strength and spring steel of high strength. Through this stability investigation, trial and error is reduced in design and manufacture, at the same time, we are accumulated foundation data for unit control.

A Study on the applicability of ultrasonic knife for processing CFRTP materials (CFRTP 소재 가공을 위한 초음파 나이프 적용 가능성에 관한 연구)

  • Ki-Hyeok Song;Hye-Jin Kim;Ji-young Park;Si-Myung Sung
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.9-14
    • /
    • 2023
  • In this study, an experiment was conducted to confirm the applicability of the external shape control of the ultrasonic knife to the CFRTP material, which is the base material of thermoplastic. TC910 based on polyamide6 (PA6) was used as the material. The slope 와 and tool transfer speed of the material and tool were selected as process factors for processing, and the following results were obtained. Under all cutting conditions using an ultrasonic knife, friction heat caused by high-frequency vibration was issued at 150℃ at the contact part between the material and the knife during cutting. As a result of the cutting force analysis, the faster the transfer speed, the higher the cutting force as the angle of entry of the blade increased, and the size of the cutting force changed during cutting. As for the size of the burr in accordance with the transfer speed condition, the smallest burr occurred at 150mm/min in the side part, and the smallest burr occurred at 150mm/min and 200mm/min in the case of the outlet burr. The size of the burr according to the entry angle tended to decrease as the tool entry angle increased, and the side part tended to increase as the tool entry angle increased. As a result of the cutting surface analysis, it was confirmed that the base material was eluted under all conditions, and the faster the transfer speed, the lower the elution phenomenon of the base material. Based on the above results, cutting the CFRTP material with an ultrasonic knife is possible, but the effect on heat generation caused by friction needs to be minimized, and further research needs to be conducted on this.

A Study on the Classification and Prediction of the Chip Type under the Specified Cutting Conditions in Turning (선삭가공시 절삭조건에 의한 Chip형태의 분류와 예측에 관한 연구)

  • Sim, G.J.;Cheong, C.Y.;Seo, N.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.53-62
    • /
    • 1995
  • In recent years, the rapid development of the machine tool and tough insert has made metal removal rates increase, and automatic system without human supervision requires a higher degree reliability of machining process. Therefore the control of chips is one of the important topics which deserves much attention. The chip classification was made based upon standard deviation of the mean cutting force measured by a tool dynamometer. STS304was chosen as the workpiece which is known as the difficult-to-cut material and mainly saw-toothed chip produced, and the chip type according to the standard deviation of mean cutting force was classified into five categories in this experiment. Long continuous type chip which interrupts the normal cutting process, and damages the operator, tool and workpiece has low standard deviation value, while short broken type chip, which is favourable chip for disposal, has relatively large standard deviation value. In addition, we investigated the possibility that the chip type can be predicted analyzing the relationship between chip type and cutting condition by the trained neural network, and obtained favourable results by which the chip type can be predicted with cutting conditon before cutting process.

  • PDF

Effects of Gamma-Irradiation on Cooking Property of Black Soybeans (검정콩의 조리특성에 관한 감마선조사의 영향)

  • 김종군
    • Journal of the Korean Home Economics Association
    • /
    • v.30 no.3
    • /
    • pp.119-129
    • /
    • 1992
  • Black soybeans were gamma-irradiated at dost levels of 0, 2., 5, 10 and 20 kGy, and stored at room temperature for the experiments associated with cooking quality. The degree of cooking of soybeans in boiling water at 98-10$0^{\circ}C$ has been determined by measuring the maximum cutting force of cotyledon. The cutting force to reach a complete cooking was about 120~130g/g. Irradiation at 2.5~20kGy caused the reduction of cooking time in black soybeans by 30~60% compared to the nonirradiated control, and the cooking rate constant of the irradiated samples was higher than that fo the nonirradiated control sample. These results were similarly found in the stored samples for one year at room temperature after irradiation. Color characteristics of cooked samples showed no significant difference between the nonirradiated control and 5 kGy-irradiated sample. After complete cooking of black soybeans, there were not significant in the organoleptic qualities between the nonirradiated and irradiated samples.

  • PDF

Adaptive Control Constraint System through Current Monitoring of Spindle in NC Lathe Process (NC 선반공정에서 주축 전류 모니터링을 통한 구속적응제어 시스템)

  • 신동수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.27-33
    • /
    • 1999
  • In order to regulate cutting force at a desired level during NC lathe process, a feedrate override Adaptive Control Constraint system was developed. Nonlinear model of the cutting process was linearized as an adaptive model with a time varing process parameter. Performance of the ACC system was confirmed on the NC lathe equipped with the developed NC system through a large amount of experiment.

  • PDF