• Title/Summary/Keyword: Cutting Angle

Search Result 559, Processing Time 0.025 seconds

Some Observations on SOIL SOIL-Failure By Linear Blade Using " Stilt" System

  • Mandang, Tinke;Nishimura, Isao
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1073-1087
    • /
    • 1993
  • Many investigations have been carried out concerning tillage tool performance, including energy requirement . Since the performance of tillage could also be evaluated through the change of soil , then it is necessary to investigate the soil cutting process and the pattern of soil failure. This study was conducted using indoor soil bin, STILT (Soil Tillage Tool Interaction) system. The result shows that the soil bin experiments could provide the clear understandings about phenomena of soil failure. The movement of sil , the successive failures was clearly visualized. The relations between the horizontal and vertical forces to the linear motion blade, the shear force on the shear plane which devides soil layer into several segments were indicated by the fluctuation/vibration of the recorded resistance and forces. The results show that the horizontal force(Fx) and vertical force (Fz) develope their frequencies as the change of velocity of blade (10, 20, 40 mm/sec) for each cutting angle (35, 45, 60 degrees). Resultant force of Fx and Fz are much influenced by the cutting angle.

  • PDF

Turning of Magnetic CuFe$_2$O$_4$ Ferrite

  • Lee, Jae-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.56-61
    • /
    • 2002
  • CuFe$_2$O$_4$ ferrite was machined with cermet tools to clarify the machinability. The tool wear became the smallest at the cutting speed of 90m/min with the depth of cut of 0.2mm. The surface roughness became larger with increasing the cutting speed and the chamfer angle of tool. The tool with the chamfer angle of 15° showed the smallest wear. The surface roughness increased almost proportionally with the increase of chip size. The tool wear reduced with increasing feed in the depth of cut not more than 0.2mm.

Machinability Evaluation of CBN Ball End Milling in Die & Mold Steels with High Hardness (고경도 금형강의 CBN 볼 엔드밀 가공에서 가공성 평가)

  • Kim, Hong-Gyoo;Sim, Jae-Hyung;Lee, Jong-Chan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.119-126
    • /
    • 2007
  • Generally, the machinability of materials that have a good mechanical properties is poor. The material having a high strength, high toughness in high temperature and wear resistance, it is difficult to remove a chip from workpiece. STD11 and NAK80 are kinds of these materials and these materials can be used in many industrial fields. But it is limited in use because of high cost and poor machinability. In this experimental study, the cutting of STD11 and NAK80 were used to decide the machinability and the tool shape of CBN ball end mill. From the results, the CBN ball end mill is verified that the estimated cutting edge shape of rake angle 30 degree has consistent effect on the tool wear and cutting force.

A Study of Characteristic According to Rake Angel of Endmill (엔드밀의 경사각에 따른 특성 연구)

  • 김경배;서천석;박찬섭;고성림
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.471-478
    • /
    • 2000
  • Endmill is one of the most important cutting tool, not only for machining of mold and die, but also for manufacturing of car industrial. Futhermore with spindle speeds on the increase and machined-surface quality aspiring to higher levels. The purpose of this study is an analysis of endmill's rake angle for appropriate tools design and making for the high speed machining. In this study, Experimental works are also executed to measure shape of endmills, cutting force, on different shape of endmills. Finally, To get concept of endmill design, Tool life was experimented on various design of tool from this study.

  • PDF

A Study on the minimizing of cutting depth in sub-micro machining (초정밀 절삭에서의 가공깊이 최소화에 관한연구)

  • 손성민;허성우;안중환
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.376-381
    • /
    • 2003
  • Ultra precision diamond cutting is a very efficient manufacturing method for optical parts such as HOE, Fresnel lenses, diffraction lenses, and others. During micro cutting, the rake angle is likely to become negative because the tool edge radius is considerably large compared to the sub-micrometer-order depth of cut. Depending on the ratio of the tool edge radius to the depth of cut, different micro-cutting mechanism modes appear. Therefore, the tool edge sharpness is the most important factor affecting the qualities of machined parts. That is why diamond especially mono-crystal diamond, which has the sharpest edge among all other materials is widely used in micro-cutting. The question arises, given a diamond tool, what is the minimum (critical) depth of cut to get continuous chips while in the cutting process\ulcorner In this paper, the micro machinability around the critical depth of cut is investigated in micro grooving with a diamond tool, and introduce the minimizing method of cutting depth using vibration cutting. The experimental results show the characteristics of micro cutting in terms of cutting force ratio (Fx/Fy), chip shape, surface roughness, and surface hardeing around the critical depth of cut.

  • PDF

Calculation of Rotation Angle of the Linear Hotwire Cutting System for VLM-s (VLM-S용 선형열선절단기의 회전각 계산)

  • Lee, Sang-Ho;An, Dong-Gyu;Yang, Dong-Yeol;Dong Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.87-94
    • /
    • 2002
  • Most of Rapid Prototyping (RP) process adopt a solid Computer Aided Design (CAD) model, slicing into thin layers of uniform, but not necessarily constant, thickness in the building direction. Each cross-sectional layer is successive1y deposited and at the same time, bonded onto the previous layers; the stacked layers form a physical part of the model. The objective of this study is to develop a method for calculating the rotation angle ($$\theta$_x, $\theta$_y$) of hotwire of the cutting system in the three-dimensional space for the Variable Lamination Manufacturing process using expandable polystyrene foam sheet (VLM-S). In order to examine the applicability of the developed method to VLM-S, various three-dimensional shapes. such as a screw, an extruded cross, and free surface bodies such as miniatures of the monkey(a figure of Sonokong), were made using the data obtained form the method.

A Study on the Machinability Evaluation According to Lubrication Conditions and Taper Angle for Turning of SCM440 (SCM440 의 선삭에서 윤활조건과 테이퍼 각에 따른 가공성 평가에 관한 연구)

  • Choi, Min-Seok;Kim, Dong-Hyeon;Hwang, Seong-Ju;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • Recently, in industry field, many researchers are looking for ways to reduce the use of lubricant because of environmental and economical reasons. MQL lubrication is one of many lubrication technologies. The aim of this study is to evaluate the machinability considering lubrication methods and taper angles of workpieces for turning of SCM440. Workpieces of two shapes such as workpiece with and without taper angle are used. And two lubrication methods such as MQL and Wet have been considered. And cutting force and surface roughness are used as characteristic values. Cutting speed, feed rate, injection angle and distance are used as design parameters. The characteristic values were statistically analyzed by Taguchi method. From the results, main effects plot and importance of each parameter according to conditions are analyzed. Finally, this study has been suggested the optimum machining conditions according to the lubrication methods, machining conditions and shape of workpiece.

A Study on the Cutting Characteristics of SCM440, SNCM21, STS 304 in Cryogenic Cutting(1st Report) (난삭재의 극저온절삭에서의 절삭 특성에 관한 연구)

  • Kim, Chill-Su;Oh, Sun-Sae;Lim, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.44-53
    • /
    • 1994
  • We experimented on cutting characteristics-cutting force, behavior of cutting temprature, surface foughness, behavior of chips-under low tempdeature, which generated by liquid nitrogen (77K). The workpieces were freezed to -195 .deg. C and liquid nitrogen was also sprinkled on cutting area in order to increase the efficiency of machining in low temperature. The workpiece was became to -195 .deg. C in 5 minutes, and cutting temperature in CC was lower about 170 .deg. C than NC. The cutting force trended to increase slighty in cooled cutting, but chip thickness was decreased, shear angle was however increased. The form of chips was in good conditions of long or short tubular chips in CC. In CC surface roughness of workpiece was better than NC. In NC surface hardness of chips trended to increase according to increasing of cutting speed, but in CC it trended to decrease. The power spectrum of vertical cutting force trended to increase according to increasing of feed, and in CC it was higher than NC.

  • PDF

Assessment of Cutting Performance of a TBM Disc Cutter for Anisotropic Rock by Linear Cutting Test (선형절삭시험에 의한 이방성 암석에 대한 TBM 디스크커터 절삭 성능 평가 연구)

  • Jeong, Ho-Young;Jeon, Seok-Won;Cho, Jung-Woo;Chang, Soo-Ho;Bae, Gyu-Jin
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.508-517
    • /
    • 2011
  • The linear cutting test is the most reliable and accurate approach to measuring cutting forces and cutting efficiency using full-size disc cutter in various rock types. The result of linear cutting tests can be used to obtain the key parameters of cutter-head design (i.e. optimum cutter spacing, cutter forces). In Korea, LCM (Linear Cutting Machine) tests have been performed for typical Korean rock types, but these studies focused on the isotropic rocktypes. For prediction of TBM (Tunnel Boring Machine) performances in complex geological conditions including a bedded and schistose rockmass, it is important to consider the effects of anisotropy of rockmass on cutting performances and cutting efficiency. This study discusses a series of LCM tests that were performed for Asan Gneiss having two types of anisotropy angles to assess the effect of the anisotropy angle on rock-cutting performances of TBM. The result shows that the rock-cutting performances and optimum cutting conditions are affected by anisotropy angle and the effect of anisotropy on rock strength should be considered in a prediction of the cutting performances and efficiency of TBM.

The Effest of Matrix of Nodular Graphite Cast Iron on Machinability in Lathe Turning - Cutting Force, Cutting Ratio and Shear Angle- (球狀黑鉛鑄鐵의 其他組織이 切削性에 미치는 영향 I)

  • 성환태;안상욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.807-813
    • /
    • 1986
  • The orthogonal cutting method of the nodular graphite cast iron in the lathe turning, whose matrix were formulated under two kinds of annealing conditions, has been experimentally studied and the results investigated. The various characteristics of machinabilities of the nodular cast iron, depending upon its matrix, have been obtained from the results as follows. (1) As depth of cut increases, the cutting ratio and the shear angles tend to slightly increase, and as the containing quantity of ferrite matrix increases, they slightly decrease. (2) As depth of cut increases, the cutting force increases in an approximate straight line, and as the containing quantity of ferrite matrix increases, they decreases and the decreasing rate is about 20-30%. (3) As the containing quantity of ferrite matrix increases, the friction force acting on the tool face decreases and the decreasing rate is about 34-40% in case of the lower depth of cut, but in case of the higher depth of cut the decreasing rate is very small. (4) Both shearing force and vertical force show a lineal increases, and according as ferrite matrix increases there is a decrease by 25% in shearing force and a 12-25% decrease in vertical force. (5) Shearing speed and chip flow speed keep almost a constant value irrespective of matrix.