• Title/Summary/Keyword: Cutter-Head

Search Result 54, Processing Time 0.026 seconds

Excavation Mechanism of Roadheader and Statistical Analysis of its Key Design Parameters Based on Database (로드헤더의 굴착 원리와 데이터베이스를 활용한 로드헤더 핵심 설계 항목의 통계분석)

  • Park, Young-Taek;Choi, Soon-Wook;Park, Jae-Hyun;Lee, Chul-Ho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.428-441
    • /
    • 2013
  • Nowadays, a roadheader as a mechanical excavator is in high demand, especially for mines under various conditions and tunnels where TBMs are inapplicable. However, the records of roadheaders in Korea are seldom reported. Moreover, the number of countries with their intrinsic design and manufacturing technologies of roadheaders is very limited. Therefore, this study aimed to analyse the excavation principles of roadheader as well as its key design parameters for its optimized selection and design. In addition, the database with 143 world-widely collected roadheader design data was built, and a few statistical correlations were derived from it. A schematic procedure for roadheader design based on the database was also proposed.

Simulation of Mixing Behaviour of Turibid Water Using RAMS (RAMS를 이용한 탁수의 혼합거동모의)

  • Kim, Ji-Hoon;Kim, Young-Do;Lyu, Si-Wan;Seo, Il-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.640-644
    • /
    • 2010
  • 하천, 호소 등에서 공사 시 준설작업으로 인해 고탁수가 발생되며 이러한 탁수의 이송 확산은 수환경에 변화를 초래한다. 탁수는 준설작업 시 커터헤드(cutter head)가 해저면에 닿는 순간부터 작동을 멈출 때까지 계속하여 발생하며, 이러한 과정들이 반복되면서 많은 양의 부유토사가 발생하게 되고 고탁수현상이 일어난다. 이렇게 발생한 탁수는 수체흐름에 따라 이송 및 확산된다. 탁수발생은 수중의 빛 투과를 감소시켜 일차 생산자인 부유성 및 부착조류의 생육을 저해하고, 이들의 생산성 감소와 군집구성의 변화는 수서생태계의 먹이사슬을 통해 이들을 먹이로 하는 저서무척추동물과 어류의 현존량 감소와 종 구성에 영향을 미치고, 고농도의 현탁 입자는 어류 아가미에 염증을 유발하거나 점막의 파괴와 감염을 유발하여 치사시킬 수도 있다. 또한 과도한 부유 입자는 하류로 침강되어 하천 바닥에 서식하는 부착조류, 무척추 동물 및 곤충의 생육에 피해를 주고, 이것은 어류의 먹이에 영향을 미쳐 어류 개체수를 감소시키거나 산란된 물고기 알을 매몰시키거나 질식시키는 등 여러 가지 방법으로 수서생물상에 영향을 미치게 된다.(낙동강수계관리위원회, 2005) 따라서 준설작업에 있어 탁수의 이송 확산범위를 사전에 예측하고 국내 실정과 환경여건에 알맞게 적용되고, 실용화될 수 있는 수치모델링에 대한 기반핵심 기술개발이 필요하다. 현재 낙동강에서 진행되고 있는 준설현장에서 발생하는 부유탁수의 이송 확산과정을 이차원 흐름해석모형인 RAM2 모형과 오염물 이송 확산해석모형인 RAM4 모형을 이용하여 수치해석을 하고 분석함으로써 수치해석에 의한 부유탁수의 이송 확산모의 결과가 환경영향 범위를 예측하는 데에 적용될 수 있는지를 알아보고자 한다.

  • PDF

Application of TBM for Mining and Energy Resources Development (광물과 에너지자원 개발을 위한 TBM 활용사례)

  • Ko, Tae Young;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.460-468
    • /
    • 2021
  • A TBM is an equipment that excavates a tunnel with a full face by rotating a circular cutter head and its advantages are fast excavation rate and safe construction. A TBM, which is primarily used for tunnel excavation on civil construction sites, is easily adaptable to information and communication technology. Research related to unmanned and automated technology is being actively pursued. TBM applications for mining and energy resource development in other countries were investigated in this study. The difference of TBM applications between the mining and energy resource development and civil construction sites was examined. Technical factors such as geological conditions, depth, site access, TBM launching, alignment and inclination, TBM size, and others that should be considered when choosing a TBM were investigated. Finally, the advantages and disadvantages of TBM application in mines and the technical requirements for TBM for successful mine application are summarized.

Technology to reduce water ingress for TBM cutterhead intervention

  • Ham, Soo-Kwon;kim, Beom-Ju;Lee, Seok-Won
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.321-329
    • /
    • 2022
  • Tunnel site where high water pressure is applied, such as subsea tunnel, generally selects the shield TBM (Tunnel Boring Machine) to maintain the tunnel excavation face. The shield TBM has cutters installed, and the cutters wear out during the process of excavation, so it should be checked and replaced regularly. This is called CHI (Cutterhead Intervention). The conventional CHI under high water pressure is very disadvantageous in terms of safety and economics because humans perform work in response to high water pressure and huge water inflow in the chamber. To overcome this disadvantage, this study proposes a new method to dramatically reduce water pressure and water ingress by injecting an appropriate grout solution into the front of the tunnel face through the shield TBM chamber, called New Face Grouting Method (NFGM). The tunnel model tests were performed to determine the characteristics, injection volume, and curing time of grout solution to be applied to the NFGM. Model test apparatus was composed of a pressure soil tank, a model shield TBM, a grout tank, and an air compressor to measure the amount of water inflow into the chamber. The model tests were conducted by changing the injection amount of the grout solution, the curing time after the grout injection, and the water/cement ratio of grout solution. From an economic point of view, the results showed that the injection volume of 1.0 L, curing time of 6 hours, and water/cement ratio of the grout solution between 1.5 and 2.0 are the most economical. It can be concluded that this study has presented a method to economically perform the CHI under the high water pressure.

Development of All-in-one Attachment Based Steel Pipe Pile Cutting Robot Prototype (강관말뚝 두부정리 및 절단 부위 핸들링 로봇의 프로토타입 개발)

  • Yeom, Dong Jun;Han, Jae Hyun;Jung, Eui Hyun;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.6
    • /
    • pp.115-123
    • /
    • 2018
  • The primary objective of this study is to develop an all-in-one based steel pipe pile cutting robot prototype that improves the conventional steel pipe pile head cutting work in safety, quality, and productivity. For this, the following research works are conducted sequentially; 1)literature review and expert survey, 2)selection of core technology using AHP analysis, 3)deduction of detail design, 4)verification of structural stability, 5)development of full-scale prototype. As a result leveling laser and laser detector(94.46), plasma cutter(96.72), rotary grapple(98.45) are selected as a core technologies. As an outcome, it is analyzed that gripper, cylinder pivot bracket and gripper base are structurally stable. Their maximum stresses are shown as 43.0%, 19.4%, 5.3% compared to their yield strength respectively. The development of full-scale prototype in this study will be utilized for the development of the all-in-one attachment based steel pipe pile cutting robot commercialization model.

Experimental Study for the Improvement of an Automated PHC Pile Head Cutter (PHC 파일 두부정리 자동화 장비 개선에 관한 실험적 연구)

  • Lee Jeong-Ho;Kim Myoung-Ho;Kim Young-Suk;Cho Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.4 s.26
    • /
    • pp.142-151
    • /
    • 2005
  • Several advanced countries have been continually developed PHC pile cutting automation machines for improving productivity, safety and quality of the conventional PHC pile cutting work. However, the target work of the previously developed PHC pile cutting automation machines is only crushing the head of PHC pile. Dangerous grinding work is still performed by workers with seven inch hand grinder. In domestic construction industry, the PHC pile cutting work is usually performed by a crusher and three to four skilled workers. Recent analysis results of the PHC pile cutting work reveal that it frequently makes a lot of cracks which significantly reduce the strength of the pile and is labor-intensive work. The primary objective of this study is to propose the end-effector which can effectively break PHC pile without any longitudinal cracks and to develop an automated pile cutting machine having unified grinder and crusher parts through a wide variety of laboratory and field tests. It is anticipated that the development of the automated pile cutting machine would be able to bring improvements in safety, productivity, quality as well as cost saving.

COMPARATIVE STUDIES OF THE ADHESIVE QUALITIES OF POLYCARBOXYLATE CEMENTS (카복실레이트계 시멘트의 접착력에 관한 비교 연구)

  • Lee, Han-Moo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.17 no.1
    • /
    • pp.23-34
    • /
    • 1979
  • In this study, the adhesive strength of three commercial polycarboxylate cements to ten types of dental casting alloys, such as gold, palladium, silver, indium, copper, nickel, chromium, and human enamel and dentine were measured and compared with that of a conventional zinc phosphate cement. The $8.0mm{\times}3.0mm$ cylindrical alloy specimens were made by casting. The enamel specimens were prepared from the labial surface of human upper incisor, and the dentine specimens were prepared from the occulusal surface of the human molar respectively. Sound extracted human teeth, which had been kept in a fresh condition since, extraction, were mounted in a wax box with a cold-curing acrylic resin to expose the flattened area. The mounted teeth were then placed in a Specimen Cutter (Technicut) and were cut down under a water spray, and then the flat area on the all specimens were ground by hand with 400 and 600 grit wet silicone carbide paper. Two such specimens were then cemented together face-to-face with freshly mixed cement, and moderate finger pressure was applied to squeeze the cement to a thin and uniform film. All cemented specimens were then kept in a thermostatic humidor cabinet regulated at $23{\pm}2^{\circ}C.$ and more than 95 per cent relative humidity and tested after 24 hours and 1 week. Link chain was attached to each alloy specimen to reduce the rigidity of the jig assembly, and then all the specimens were mounted in the grips of the Instron Universal Testing Machine, and a tensile load was delivered to the adhering surface at a cross head speed of 0.20 mm/min. The loads to which the specimens were subjected were recorded on a chart moving at 0.50 mm/min. The adhesive strength was determined by measuring the load when the specimen separated from the cement block and by dividing the load by the area. The test was performed in a room at $23{\pm}2^{\circ}C.$ and $50{\pm}10$ per cent relative humidity. A minimum of five specimens were tested each material and those which deviated more than 15 per cent from the mean were discarded and new specimens prepared. From the experiments, the following results were obtained. 1) It was found that the adhesive strength of the polycarboxylate cement to all alloys tested was considerably greater than that of the zinc phosphate cement. 2) The adhesive strength of the polycarboxylate cements was superior to the non precious alloys, such as the copper, indium, nickel and chromium alloys, but it was inferior to the precious gold, silver and palladium alloys. 3) Surface treatment of the alloy was found to be an important factor in achieving adhesion. It appears that a polycarboxylate cement will adhere better to a smooth surface than to a rough one. This contrasts with zinc phosphate cements, where a rough helps mechanical interlocking. 4) The adhesion of the polycarboxylate cement with enamel was found superior to its adhesion with dentine.

  • PDF

Numerical Analysis of EPB TBM Driving using Coupled DEM-FDM Part II : Parametric Study (개별요소법과 유한차분법 연계 해석을 이용한 EPB TBM 굴진해석 Part II: 매개변수 해석)

  • Choi, Soon-wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.496-507
    • /
    • 2020
  • A prediction of the performance of EPB TBM is significant for improving the constructability of tunnels. Thus, various attempts to simulate TBM excavation by the numerical method have been made until these days. In this paper, to evaluate the performance of TBM with different operating conditions, a parametric study was carried out using coupled discrete element method (DEM) and finite difference method (FDM) EPB TBM driving model. The analysis was conducted by changing the penetration rate (0.5 and 1.0 mm/sec) and the rotational speed of screw conveyor (5, 15, and 25 rpm) while the rotation velocity of the cutter head kept constant at 2 rpm. The torque, thrust force, chamber pressure, and discharging with different TBM operating conditions were compared. The result of parametric study shows that the optimum driving condition can be determined by the coupled DEM-FDM numerical model.

Numerical Analysis of EPB TBM Driving using Coupled DEM-FDM Part I : Modeling (개별요소법과 유한차분법 연계 해석을 이용한 EPB TBM 굴진해석 Part I : 모델링)

  • Choi, Soon-wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.484-495
    • /
    • 2020
  • To numerically simulate the advance of EPB TBM, various type of numerical analysis methods have been adopted including discrete element method (DEM), finite element method (FEM), and finite difference method (FDM). In this paper, an EPB TBM driving model was proposed by using coupled DEM-FDM. In the numerical model, DEM was applied in the TBM excavation area, and contact properties of particles were calibrated by a series of triaxial tests. Since the ground around the excavation area was coupled with FDM, the horizontal stress considering the coefficient of earth pressure at rest could be applied. Also, the number of required particles was reduced and the efficiency of the analysis was increased. The proposed model can control the advance rate and rotational speed of the cutter head and screw conveyor, and derive the torque, thrust force, chamber pressure, and discharging during TBM tunnelling.

Case of assembly process review and improvement for mega-diameter slurry shield TBM through the launching area (발진부지를 이용한 초대구경 이수식 쉴드TBM 조립공정 검토 및 개선 사례)

  • Park, Jinsoo;Jun, Samsu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.637-658
    • /
    • 2022
  • TBM tunnel is simple with the iterative process of excavating the ground, building a segment ring-build, and backfilling. Drill & Blast, a conventional tunnel construction method, is more complicated than the TBM tunnel and has some restrictions because it repeats the inspection, drilling, charging, blasting, ventilation, muck treatment, and installation of support materials. However, the preparation work for excavation requires time and cost based on a very detailed plan compared to Drill & Blasting, which reinforces the ground and forms a tunnel after the formation of tunnel portal. This is because the TBM equipment for excavating the target ground determines the success or failure of the construction. If the TBM, an expensive order-made equipment, is incorrectly configured at the assembly stage, it becomes difficult to excavate from the initial stage as well as the main excavation stage. When the assembled shield TBM equipment is dismantled again, and a situation of re-assembly occurs, it is difficult throughout the construction period due to economic loss as well as time. Therefore, in this study, the layout and plan of the site and the assembly process for each major part of the TBM equipment were reviewed for the assembly of slurry shield TBM to construct the largest diameter road tunnel in domestic passing through the Han River and minimized interference with other processes and the efficiency of cutter head assembly and transport were analyzed and improved to suit the site conditions.