• Title/Summary/Keyword: Cutter conditions

Search Result 132, Processing Time 0.02 seconds

Evaluation on the Physical and Chemical Properties of Expanded Rice Hulls as Hydroponic Culture Medium (양액재배용 팽연화 왕겨 배지의 이화학적 특성 구명)

  • 김경희;임상현;남궁양일;유근창
    • Journal of Bio-Environment Control
    • /
    • v.9 no.2
    • /
    • pp.73-78
    • /
    • 2000
  • This study was carried out to investigate appropriate processing conditions for expanded rice hulls to be used as a medium material in nutrient cultures. The water holding capacity of expanded rice hulls produced by using a domestic grinder with 8 mm gap and 3 mm cutter height was 271.0, and the bulk density and CEC were 0.19g·m-3 and 37.0 cmol·kg-1, respectively. These values are higher than those of perilte. However, geometric mean diameter (GMD) of expanded rice hulls was 1.01mm which was smaller than that of perlite, indicating unfavorable porosity. After supplying nutrient solution, the faster water percolation in expanded rice than perlite required more frequent water supply. There was no significant difference in tomato fruit yield between expanded rice hull and perlite. The pH increase and the lack of nitrogen in early stage of culture are to be solved in the future.

  • PDF

Application of TBM for Mining and Energy Resources Development (광물과 에너지자원 개발을 위한 TBM 활용사례)

  • Ko, Tae Young;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.460-468
    • /
    • 2021
  • A TBM is an equipment that excavates a tunnel with a full face by rotating a circular cutter head and its advantages are fast excavation rate and safe construction. A TBM, which is primarily used for tunnel excavation on civil construction sites, is easily adaptable to information and communication technology. Research related to unmanned and automated technology is being actively pursued. TBM applications for mining and energy resource development in other countries were investigated in this study. The difference of TBM applications between the mining and energy resource development and civil construction sites was examined. Technical factors such as geological conditions, depth, site access, TBM launching, alignment and inclination, TBM size, and others that should be considered when choosing a TBM were investigated. Finally, the advantages and disadvantages of TBM application in mines and the technical requirements for TBM for successful mine application are summarized.

A Study on Applicability of Electrical Resistivity Survey in Mechanized Tunnelling Job-sites (TBM 현장에서 전기비저항 탐사의 적용성에 관한 연구)

  • Lee, Kang-Hyun;Park, Jin-Ho;Park, Jiho;Lee, In-Mo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.3
    • /
    • pp.35-45
    • /
    • 2018
  • It is essential to predict ground conditions ahead of the tunnel face during tunnel excavation. Various studies on tunnel prediction method of the ground condition ahead of the tunnel face have already been done and applied to in mechanized tunnelling job sites. So, all the methods used in mechanized tunnelling to predict ground conditions ahead of the tunnel face were reviewed. A questionnaire surveying Tunnel Boring Machine (TBM) operators with at least 10 years' experience in TBM operation was used to determine the requirements for prediction methods as well as the distance from the tunnel face that must be assessed. Based on the result of questionnaire survey, the most feasible prediction methods applicable to mechanized tunnelling job-sites are suggested. One of the prediction methods applicable to mechanized tunnelling job-sites might be the electrical resistivity survey by utilizing the disk cutter on the cutterhead as electrode. So, in this study, laboratory tests were performed to evaluate the feasibility of prediction method utilizing electrical resistivity survey at mechanized tunnelling job-sites. It was found that geological condition ahead of 0.3 times of TBM's diameter from tunnel face could be predicted.

Numerical Analysis of EPB TBM Driving using Coupled DEM-FDM Part II : Parametric Study (개별요소법과 유한차분법 연계 해석을 이용한 EPB TBM 굴진해석 Part II: 매개변수 해석)

  • Choi, Soon-wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.496-507
    • /
    • 2020
  • A prediction of the performance of EPB TBM is significant for improving the constructability of tunnels. Thus, various attempts to simulate TBM excavation by the numerical method have been made until these days. In this paper, to evaluate the performance of TBM with different operating conditions, a parametric study was carried out using coupled discrete element method (DEM) and finite difference method (FDM) EPB TBM driving model. The analysis was conducted by changing the penetration rate (0.5 and 1.0 mm/sec) and the rotational speed of screw conveyor (5, 15, and 25 rpm) while the rotation velocity of the cutter head kept constant at 2 rpm. The torque, thrust force, chamber pressure, and discharging with different TBM operating conditions were compared. The result of parametric study shows that the optimum driving condition can be determined by the coupled DEM-FDM numerical model.

A basic study on the mixing bar interaction efficiency in shield TBM chamber (Shield TBM 챔버 내 mixing bar 교반 효율에 대한 기본연구)

  • Hwang, Beoung-Hyeon;Kim, Sang-Hwan;Lee, Kyung-Heon;An, Jun-Kyu;Cho, Sung-Woo;Kim, Yeon-Deok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.91-105
    • /
    • 2020
  • This study is the basic study for improving the range of influence and potency of mixing bars in the chamber of Shield TBM. Currently, there are many studies on disk cutters, cutter bits and segments in the study of the domestic Shield TBM. However, studies that mix soil and rocks that come from the membrane during the Shield TBM excavation and scatter them with screw conveyors are not as good as those abroad. In this study, the existing Shield TBM Chamber was manufactured as a miniature and the experiment. Inside the chamber, different sizes (4 mm, 6 mm, 8 mm, 10 mm) and colors (black, white, red, and blue) were used to form layers. This experiment was carried out by different shapes and sizes of RPM and mixing bars. In addition, the difference between a miniature model and a reclining one was checked to determine the effect of the direction of gravity on the mixing efficiency. This was done in the same way for all other conditions other than differences in the direction of gravity. Through this experiment, we identified the orientation of the chamber model, the size and shape of the mixing bar inside, and the mixing effect and torque depending on RPM. A comparative review of the mixing effect and torque confirmed that the shape and size of the mixing bar affect the mixing of samples, and that the direction of gravity affects torque.

Selection of Acid-tolerant and Hetero-fermentative Lactic Acid Bacteria Producing Non-proteinaceous Anti-bacterial Substances for Kimchi Fermentation (비단백질성 항균물질을 생산하는 김치발효용 내산성 Hetero 발효형 유산균주 선발)

  • Kim, Hye-Rim;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.119-127
    • /
    • 2013
  • Twenty-three strains of Leuconostoc species and 45 strains of Weissella species inhibiting the growth of Lactobacillus sakei, one of the most populous lactic acid bacteria in over-ripened kimchi, were isolated from kimchi in our previous study. Among these hetero-fermentative 68 strains, Leuconostoc mesenteroides CK0128, Weissella cibaria CK0633, and W. cibaria KK0797 exhibited a relatively high survival rate in MRS medium, which was adjusted to pH 4.3 using an acid mixture consisting of acetic and lactic acids, and produced a large amount of exopolysaccharides. The culture supernatants of 3 strains were fractionated by a molecular weight cutter and lyophilized. The fractions with a molecular weight smaller than 3,000 Da showed antagonistic activity against Staphylococcus aureus and Lb. sakei. The anti-bacterial substances were very stable to heat treatments ($121^{\circ}C$, 15 min) and active at acidic conditions below pH 5. ${\alpha}$-Amylase, lipase, and proteolytic enzymes (proteinase K and pepsin) did not affect their activities. These non-proteinaceous anti-bacterial substances inhibited the growth of several food pathogens.

Case of assembly process review and improvement for mega-diameter slurry shield TBM through the launching area (발진부지를 이용한 초대구경 이수식 쉴드TBM 조립공정 검토 및 개선 사례)

  • Park, Jinsoo;Jun, Samsu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.637-658
    • /
    • 2022
  • TBM tunnel is simple with the iterative process of excavating the ground, building a segment ring-build, and backfilling. Drill & Blast, a conventional tunnel construction method, is more complicated than the TBM tunnel and has some restrictions because it repeats the inspection, drilling, charging, blasting, ventilation, muck treatment, and installation of support materials. However, the preparation work for excavation requires time and cost based on a very detailed plan compared to Drill & Blasting, which reinforces the ground and forms a tunnel after the formation of tunnel portal. This is because the TBM equipment for excavating the target ground determines the success or failure of the construction. If the TBM, an expensive order-made equipment, is incorrectly configured at the assembly stage, it becomes difficult to excavate from the initial stage as well as the main excavation stage. When the assembled shield TBM equipment is dismantled again, and a situation of re-assembly occurs, it is difficult throughout the construction period due to economic loss as well as time. Therefore, in this study, the layout and plan of the site and the assembly process for each major part of the TBM equipment were reviewed for the assembly of slurry shield TBM to construct the largest diameter road tunnel in domestic passing through the Han River and minimized interference with other processes and the efficiency of cutter head assembly and transport were analyzed and improved to suit the site conditions.

Study on EPB TBM performance by conducting lab-scaled excavation tests with different foam injection for artificial sand (실내 굴진 시험을 통한 폼 주입 조건에 따른 인공 사질토 지반에서 EPB TBM 굴진성능에 대한 고찰)

  • Lee, Hyobum;Shin, Dahan;Kim, Dae-Young;Shin, Young Jin;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.545-560
    • /
    • 2019
  • During EPB TBM tunnelling, an appropriate application of additives such as foam and polymer is an essential factor to secure the stability of TBM as well as tunnelling performance. From the '90s, there have been many studies on the optimal injection of additives worldwidely contrary to the domestic situation. Therefore, in this paper, the foam, which is widely adopted for soil conditioning, was selected as an additive in order to investigate the effect of foam injection on TBM performance through a series of laboratory excavation tests. The excavation experiments were carried out on artificial sandy soil specimens with consideration of the variance of FIR (Foam Injection Ratio), FER (Foam Expansion Ratio) and $C_f$ (Surfactant Concentration), which indicate the amount and quality of the foam. During the tests, torque values were measured, and the workability of conditioned soil was evaluated by comparing the slump values of muck after each experiment. In addition, a weight loss of the replaceable aluminum cutter bits installed on the blade was measured to estimate the degree of abrasion. Finally, the foam injection ratio for the optimal TBM excavation for the typical soil specimen was determined by comparing the measured torque, slump value and abrasion. Note that the foam injection conditions satisfying the appropriate level of machine load, mechanical wear and workability are essential in the EPB TBM operational design.

Development of penetration rate prediction model using shield TBM excavation data (쉴드 TBM 현장 굴진데이터를 이용한 굴착속도 예측모델 개발)

  • La, You-Sung;Kim, Myung-In;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.519-534
    • /
    • 2019
  • Mechanized tunneling methods, including shield TBM, have been increasingly used for tunnel construction because of their relatively low vibration and noise levels as well as low risk of rock-falling accidents. In the excavation using the shield TBM, it is important to design penetration rate appropriately. In present study, both subsurface investigation data and shield TBM excavation data, produced for and during ${\bigcirc}{\bigcirc}{\sim}{\bigcirc}{\bigcirc}$ high-speed railway construction, were analyzed and used to compare with shield TBM penetration rates calculated using existing penetrating rate prediction models proposed by several foreign researchers. The correlation between thrust force per disk cutter and uniaxial compressive strength was also examined and, based on the correlation analysis, a simple prediction model for penetration rate was derived. The prediction results using the existing prediction models showed approximately error rates of 50~500%, whereas the results from the simple model proposed from this study showed an error rate of 15% in average. It may be said, therefore, that the proposed model has higher applicability for shield TBM construction in similar ground conditions.

Case study on soil conditioning for EPB tunneling and troubleshooting in various grounds (다양한 지반에서의 EPB TBM 첨가제 사용 및 문제 해결 사례 연구)

  • Han-byul Kang;Sung-wook Kang;Jae-hoon Jung;Jae-won Lee;Young Jin Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.65-85
    • /
    • 2023
  • The use of TBM (Tunnel boring machine) has increased worldwide due to its performance together with the benefit of being safely and environmentally friendly compared to conventional tunneling. In particular, EPB (Earth Pressure Balanced) TBM is widely used because it can be applied to various grounds compared to Open TBM. Also EPB TBM has a simple mechanical structure and advantages in cost, requires less ground area than Slurry TBM. EPB TBM has advantages in soft ground, and more importantly, can extend its applicability by use of appropriate soil conditioning, which improves mechanical and hydrological properties of excavated soil and increases the excavation performance of EPB TBM. Various studies suggested the proper mixing ratio and injection ratio, but almost they are limited to laboratory test under atmospheric pressure such as slump test. Actual field conditions may differ depending on the ground and mechanical condition. In this study, first the amount of used soil conditioning used in the field with various grounds from hard rock to soft ground was estimated through laboratory tests and compared with the estimate in design stage. And also it was compared with the amount used during actual excavation. In addition, experience of soil conditioning for the problems of cutter head clogging and groundwater inrush that occurred during excavation is discussed. Finally, lesson learned for the use of soil conditioning in difficult ground condition such as mixed ground are reviewed.