• Title/Summary/Keyword: Cutter Runout

Search Result 20, Processing Time 0.027 seconds

A Study on the Charactistics of Machined Surface due to Cutter Runout (커터 런 아웃과 가공표면 생성에 관한 연구)

  • Hwang, J.;Lee, K. Y.;Shin, S. C.;Chung, E. S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.873-877
    • /
    • 1997
  • This paper presents experimental results to know the charcteristics of machined surface due to cutter runout. Cutter runout is a common but undesirable phenomenon in multi-tooth machining such as end-milling process because it introduces variable chip loading to insert which results in a accelerated tool wear, amplification of force variation and hence enargement vibration amplitude. To develop in-proess cutter runout compensation system, set-up the micro-positoning mechanism which is based on piezoelectric translator embeded in the work holder to manipulate the depth of cut in real-time. And feasibility test of system was done under the various experimental cutting conditions. This results provide lots of information to build-up the precision machining technology.

  • PDF

A Study on the Cutter Runout Compensation by PI Control in End Mill Process (엔드밀 가공시 비례적분제어를 이용한 커터 런아웃 보상에 관한 연구)

  • Lee, Ki-Yong;Hwang, Jun;Jung, Eui-Sik;Liang, Steven Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.65-71
    • /
    • 1998
  • This paper presents in-process compensation methodology to eliminate cutter runout and improve machined surface quality. The cutter runout compensation system consists of the micro-positioning mechanism with the PZT (piezo-electric translator) which is embeded in the sliding table to manipulate the radial depth of cut in real time. For the implementation of cutter runout compensation methodology. cutting force adaptive control was proposed in the angle domain based upon PI (proportional-integral) control strategy to eliminate chip-load change in end milling process. Micro-positioning control due to adaptive acuation force response improves the machined surface quality by compensation or elimination of cutter runout induced cutting force variation. This results will provide lots of information to build-up the precision machining technology.

  • PDF

A Study on Evaluation of Machinability using cuter Runout in Ball-end Milling (볼엔드밀 가공에서 런아웃 측정을 통한 가공성 평가에 관한 연구)

  • Kim, Byoung-Kook;Park, Hee-Bum;Lee, Deug-Woo;Kim, Jeong-Suk;Jung, Yoong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.35-44
    • /
    • 1999
  • The performance of interrupted cutting operations like milling is consideraly affected by cuter runout. In this study, cutter runout is selected as an important machining parameter for evaluation of machinability in ball-end milling and caused from misalignments of tool and holder, unbalanced mass of parts and tool deflection under machining. To evaluate the machinability due to cutter runout, the rotating accuracy of spindle, cutting force and surface roughness are measured. The rotating characteristics of spindle in each revolution speed were investigated by cutter runout in freeload. The predicted surface form of workpiece by measuring cutter runout data was compared with real surfaces. The results show that measuring runout with high response gap sensor is useful for studying the phenomenon of high-speed machining and the monitor surface form using in-process runout measurements in ball-end milling is possible.

  • PDF

Investigation of Surface Roughness Characteristics according to Tool Runout Variations in Side Milling Cutter for Worm Screw (사이드 밀링 커터를 이용한 워엄 스크루 가공에서 공구 런아웃이 표면조도에 미치는 영향분석)

  • Kim, Sun Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.76-82
    • /
    • 2009
  • A worm screw is widely used in a geared motor unit for motion conversion from rotation to linear motion. For mass production of a high quality worm, the current roll forming process is substituted with the milling cutter process. Since the milling cutter process enables the integration of all machining operations of worm manufacturing on a CNC(Computer Numerical Control) lathe, productivity can be remarkably improved. The tooling system for side milling cutter on the CNC lathe to improve machinability is developed. However, the runout of spindle and cutting tips are important factors to be considered for producing high quality worms because the tooling system has multiple tips. In this study, surface roughness variations accuracy according to runout was investigated in side milling cutter for worm screw. The result shows by simulation and experiment.

  • PDF

A Study on the Cutter Runout In-Process Compensation Using Repetitive Loaming Control (반복학습제어를 이용한 커터 런아웃 보상에 관한 연구)

  • Hwang, Joon;Chung, Eui-Sik;Hwang, Duk-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.137-143
    • /
    • 2002
  • This paper presents the In-process compensation to control cutter runout and improve the machined surface quality. Cutter runout compensation system consists of the micro-positioning servo system with piezoelectric actuator which is embeded in the sliding table to manipulate radial depth of cut in real-time. Cutting force feedback control was proposed in the angle domain based upon repetitive learning control strategy to eliminate chip load variation in end milling process. Micro-positioning control due to adaptive actuation force response improves the machined surface quality by compensation runout effect induced cutting force variation. This result will provide lots of information to build-up the preciswion machining technology.

A Study on the Detection of Cutter Runout Magnitude in Milling (밀링가공에서의 커더 런 아웃량 검출에 관한 연구)

  • Hwang, J.;Chung, E. S.;Lee, K. Y.;Shin, S. C.;Nam-Gung, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.151-156
    • /
    • 1995
  • This paper presents a methodology for real-time detecting and identifying the runout geometry of an end mill. Cutter runout is a common but undesirable phenomenon in multi-tooth machining such as end-milling process because it introduces variable chip loading to insert which results in a accelerated tool wear,amplification of force variation and hence enlargement vibration amplitude. Form understanding of chip load change kinematics, the analytical sutting force model was formulated as the angular domain convolution of three dynamic cutting force component functions. By virtue of the convolution integration property, the frequency domain expression of the total cutting forces can be given as the algebraic multiplication of the Fourier transforms of the local cutting forces and the chip width density of the cutter. Experimental study are presented to validata the analytical model. This study provides the in-process monitoring and compensation of dynamic cutter runout to improve machining tolerance tolerance and surface quality for industriql application.

  • PDF

Effects of cutter runout on end milling forces I -Up and milling- (엔드밀링 절삭력에 미치는 공구형상오차 I -상향 엔드밀링-)

  • 이영문;최원식;송태성;권오진;백승기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.985-988
    • /
    • 1997
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study ,a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented in up end milling process using measured cutting forces. Size effect was identified from the analysis of specific cutting resistance obtained by using the modified undeformed chip section area.

  • PDF

Cutter Runout Parameter Estimation in Ball-End Milling (볼엔드밀 가공에서 공구 런아웃 매개변수 검출)

  • 김창주;김성윤;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.171-178
    • /
    • 2000
  • In this study, an indirect method to estimate the setup runout of a ball-end mill from cutting force signal is proposed. This runout makes cutting forces of each tooth of the milling cutter unequal. By transforming the cutting force model from time domain to frequency domain through time-convolution theorem, the magnitude and phase angle of runout can be explicitly expressed with material constants, cutting conditions, and force signal. The static setup runout can be obtained by extrapolating estimated effective runout, which is independent of feedrate but decreases linearly with increase in axial depth of cut. The setup runout estimated by slot cutting experiments, shows good agreement with the measured one.

  • PDF

Cutter Runout Elimination in End Milling through Two-Axes PI Force Control (엔드밀 가공에서 2축 절사력 PI 제어를 통한 커터 런아웃 제거에 관한 연구)

  • Noh, Jong-Ho;Hwang, Joon;Liang, Steven Y.;Chung, Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.83-89
    • /
    • 1999
  • This paper presents the in-process runout compensation methodology to improve the surface quality of circular contouring cut in end milling process. The runout compensation system is based on the manipulation of workpiece position relative to cutter in minimizing the cutting force oscillation at spindle frequency. the basic concept of this approach is realized on a end milling machine whose machining table accommodates a set of orthogonal translators perpendicular to the spindle axis. The system performed that measuring the runout related cutting force component, formulating PI controlling commands, and the manipulating the workpiece position to counteract the variation of chip load during the circular contouring cut. To evaluate the runout compensation system performance, experimental study based on the implementation of two-axes PI force control is presented in the context of cutting force regulation and part surface finish improvement.

  • PDF

A Study on the Identification of Cutter Offset by Cutting Force Model in Milling Process (밀링가공에서 절삭력 모델을 이용한 커터 오프셋 판별에 관한 연구)

  • 김영석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.91-99
    • /
    • 1998
  • This paper presents a methodology for identifying the cutter runout geometry in end milling process. Cutter runout is common but undesirable phenomenon in multi-tooth machining because it introduces variable chip loading to insert which results in a accelerated tool wear. amplification of force variation and hence enlargement vibration amplitude From understanding of chip load change kinematics, the analytical cutting force convolution model was formulated as the angular domain convolution model was formulated as the angular domain convolution of three dynamic cutting force component functions. By virtue of the convolution integration property, the frequency domain expression of the local cutting forces and the chip width density of the cutter. Experimental study is presented to validate the analytical model. This study provides the in-process monitoring and compensation of dynamic cutter runout to improve machining tolerance and surface quality for industrial application.

  • PDF