• Title/Summary/Keyword: Cutaneous leishmaniasis

Search Result 26, Processing Time 0.027 seconds

Leishmania tropica infection, in comparison to Leishmania major, induces lower delayed type hyper-sensitivity in BALB/c mice

  • Mahmoudzadeh-Niknam, Hamid;Kiaei, Simin Sadat;Iravani, Davood
    • Parasites, Hosts and Diseases
    • /
    • v.45 no.2 s.142
    • /
    • pp.103-109
    • /
    • 2007
  • Leishmania tropica and L. major are etiologic agents of human cutaneous leishmaniasis. Delayed type hypersensitivity (DTH) is an immunologic response that has been frequently used as a correlate for protection against or sensitization to leishmania antigen. In BALB/c mice, L. tropica infection results in non-ulcerating disease, whereas L. major infection results in destructive lesions. In order to clarify the immunologic mechanisms of these 2 different outcomes, we compared the ability of these 2 leishmania species in induction of DTH response in this murine model. BALB/c mice were infected with L. major or L. tropica, and disease evolution and DTH responses were determined. The results show that the primary L. major infection can exacerbate the secondary L. major infection and is associated with DTH response. Higher doses of the primary L. major infection result in more disease exacerbation of the secondary L. major infection as well as higher DTH response. L. tropica infection induces lower DTH responses than L. major. We have previously reported that the primary L. tropica infection induces partial protection against the secondary L. major infection in BALB/c mice. Induction of lower DTH response by L. tropica suggests that the protection induced against L. major by prior L. tropica infection may be due to suppression of DTH response.

Tamoxifen Induces Apoptosis of Leishmania major Promastigotes in Vitro

  • Doroodgar, Masoud;Delavari, Mahdi;Doroodgar, Moein;Abbasi, Ali;Taherian, Ali Akbar;Doroodgar, Abbas
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • Tamoxifen is an antagonist of the estrogen receptor and currently used for the treatment of breast cancer. The current treatment of cutaneous leishmaniasis with pentavalent antimony compounds is not satisfactory. Therefore, in this study, due to its antileishmanial activity, effects of tamoxifen on the growth of promastigotes and amastigotes of Leishmania major Iranian strain were evaluated in vitro. Promastigotes and amastigotes were treated with different concentrations (1, 5, 10, 20, and $50{\mu}g/ml$) and time periods (24, 48, and 72 hr) of tamoxifen. After tamoxifen treatment, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5 biphenyl tetrazolium bromide assay) was used to determine the percentage of live parasites and Graph Pad Prism software to calculate $IC_{50}$. Flow cytometry was applied to investigate the induction of tamoxifen-induced apoptosis in promastigotes. The half maximal inhibitory concentration ($IC_{50}$) of tamoxifen on promastigotes was $2.6{\mu}g/ml$ after 24 hr treatment. Flow cytometry analysis showed that tamoxifen induced early and late apoptosis in Leishmania promastigotes. While after 48 hr in control group the apoptosis was 2.0%, the $50{\mu}g/L$ concentration of tamoxifen increased it to 59.7%. Based on the in vitro antileishmanial effect, tamoxifen might be used for leishmaniasis treatment; however, further researches on in vivo effects of tamoxifen in animal models are needed.

A Novel Organotellurium Compound (RT-01) as a New Antileishmanial Agent

  • Cantalupo Lima, Camila Barbara;Arrais-Silva, Wagner Welber;Rodrigues Cunha, Rodrigo Luiz Oliveira;Giorgio, Selma
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.3
    • /
    • pp.213-218
    • /
    • 2009
  • Leishmaniasis is a neglected disease and endemic in developing countries. A lack of adequate and definitive chemotherapeutic agents to fight against this infection has led to the investigation of numerous compounds. The aim of this study was to investigate the effect of RT-01, an organotellurane compound presenting biological activities, in 2 experimental systems against Leishmania amazonensis. The in vitro system consisted of promastigotes and amastigotes forms of the parasite, and the in vivo system consisted of L.amazonensis infected BALB/c mice, an extremely susceptible mouse strain. The compound proved to be toxic against promastigotes and amastigotes. The study also showed that treatment with RT-01 produces an effect similar to that treatment with the reference antimonial drug, Glucantime, in L.amazonensis infected mice. The best results were obtained following RT-01 intralesional administration (720 ${\mu}g$/kg/day); mice showed significant delay in the development of cutaneous lesions and decreased numbers of parasites obtained from the lesions. Significant differences in tissue pathology consisted mainly of no expressive accumulation of inflammatory cells and wellpreserved structures in the skin tissue of RT-01-treated mice compared with expressive infiltration of infected cells replacing the skin tissue in lesions of untreated mice. These findings highlight the fact that the apparent potency of organotellurane compounds, together with their relatively simple structure, may represent a new avenue for the development of novel drugs to combat parasitic diseases.

Anti-leishmanial Effects of Trinitroglycerin in BALB/C Mice Infected with Leishmania major via Nitric Oxide Pathway

  • Nahrevanian, Hossein;Najafzadeh, Mana;Hajihosseini, Reza;Nazem, Habib;Farahmand, Mahin;Zamani, Zahra
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.2
    • /
    • pp.109-115
    • /
    • 2009
  • This study investigated whether trinitroglycerine (TNG) as nitric oxide (NO) releasing agent had anti-leishmanial effects and mediated pathology in BALB/c mice infected with Leishmania major. Cutaneous leishmaniasis (CL), a zoonotic infection caused by leishmania protozoa is still one of the health problems in the world and in Iran. NO is involved in host immune responses against intracellular L. major, and leishmania killing by macrophages is mediated by this substance. Moreover, application of CL treatment with NO-donors has been recently indicated. In our study, TNG was used for its ability to increase NO and to modify CL infection in mice, in order to evaluate NO effects on lesion size and formation, parasite proliferation inside macrophages, amastigote visceralization in target organs, and NO induction in plasma and organ suspensions. Data obtained in this study indicated that TNG increased plasma and liver-NO, reduced lesion sizes, removed amastigotes from lesions, livers, spleens, and lymph nodes, declined proliferation of amastigotes, hepatomegaly, and increased survival rate. However, TNG reduced spleen-NO and had no significant effects on spelenomegaly. The results show that TNG therapy reduced leishmaniasis and pathology in association with raised NO levels. TNG had some antiparasitic activity by reduction of positive smears from lesions, livers, spleens, and lymph nodes, which could emphasize the role of TNG to inhibit visceralization of L. major in target organs.

Overexpression of Ubiquitin and Amino Acid Permease Genes in Association with Antimony Resistance in Leishmania tropica Field Isolates

  • Kazemi-Rad, Elham;Mohebali, Mehdi;Erfan, Mohammad Bagher Khadem;Hajjaran, Homa;Hadighi, Ramtin;Khamesipour, Ali;Rezaie, Sassan;Saffari, Mojtaba;Raoofian, Reza;Heidari, Mansour
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.4
    • /
    • pp.413-419
    • /
    • 2013
  • The mainstay therapy against leishmaniasis is still pentavalent antimonial drugs; however, the rate of antimony resistance is increasing in endemic regions such as Iran. Understanding the molecular basis of resistance to antimonials could be helpful to improve treatment strategies. This study aimed to recognize genes involved in antimony resistance of Leishmania tropica field isolates. Sensitive and resistant L. tropica parasites were isolated from anthroponotic cutaneous leishmaniasis patients and drug susceptibility of parasites to meglumine antimoniate (Glucantime$^{(R)}$) was confirmed using in vitro assay. Then, complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) and real-time reverse transcriptase-PCR (RT-PCR) approaches were utilized on mRNAs from resistant and sensitive L. tropica isolates. We identified 2 known genes, ubiquitin implicated in protein degradation and amino acid permease (AAP3) involved in arginine uptake. Also, we identified 1 gene encoding hypothetical protein. Real-time RT-PCR revealed a significant upregulation of ubiquitin (2.54-fold), and AAP3 (2.86-fold) (P<0.05) in resistant isolates compared to sensitive ones. Our results suggest that overexpression of ubiquitin and AAP3 could potentially implicated in natural antimony resistance.

Miltefosine-Induced Apoptotic Cell Death on Leishmania major and L. tropica Strains

  • Khademvatan, Shahram;Gharavi, Mohammad Javad;Rahim, Fakher;Saki, Jasem
    • Parasites, Hosts and Diseases
    • /
    • v.49 no.1
    • /
    • pp.17-23
    • /
    • 2011
  • The aim of this study was to assess the cytotoxic effects of various concentrations of miltefosine on Leishmania major (MRHO/IR/75/ER) and L. tropica (MHOM/IR/02/Mash10) promastigotes and to observe the programmed cell death features. The colorimetric MTT assay was used to find L. major and L. tropica viability and the obtained results were expressed as 50% inhibitory concentration (IC50). Also, 50% effective doses (ED50) for L. major and L. tropica amastigotes were also determined, Annexin-V FLUOS staining was performed to study the cell death properties of miltefosine using FAGS analysis. Qualitative analysis of the total genomic DNA fragmentation was performed by agarose gel electrophoresis. Furthermore, to observe changes in cell morphology, promastigotes were examined using light microscopy. In both strains of L. major and L. tropica, miltefosine induced dose-dependent death with features of apoptosis, including cell shrinkage, DNA laddering, and externalization of phosphatidylserine. The IC50 was achieved at 22 ${\mu}M$ and 11 ${\mu}M$ for L. major and L. tropica after 48 hr of incubation, respectively. ED50 of L. major and L. tropica amastigotes were 5.7 ${\mu}M$ and 4.2 ${\mu}M$, respectively. Our results indicate that miltefosine induces apoptosis of the causative agent of cutaneous leishmaniasis in a dose-dependent manner. Interestingly, L. major did not display any apoptotic changes when it was exposed to miltefosine in concentrations sufficient to kill L. tropica.