DOI QR코드

DOI QR Code

Overexpression of Ubiquitin and Amino Acid Permease Genes in Association with Antimony Resistance in Leishmania tropica Field Isolates

  • Kazemi-Rad, Elham (Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences) ;
  • Mohebali, Mehdi (Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences) ;
  • Erfan, Mohammad Bagher Khadem (Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences) ;
  • Hajjaran, Homa (Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences) ;
  • Hadighi, Ramtin (Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences) ;
  • Khamesipour, Ali (Center for Research & Training in Skin Diseases & Leprosy, Tehran University of Medical Sciences) ;
  • Rezaie, Sassan (Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences) ;
  • Saffari, Mojtaba (Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences) ;
  • Raoofian, Reza (Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences) ;
  • Heidari, Mansour (Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences)
  • Received : 2013.02.05
  • Accepted : 2013.05.03
  • Published : 2013.08.31

Abstract

The mainstay therapy against leishmaniasis is still pentavalent antimonial drugs; however, the rate of antimony resistance is increasing in endemic regions such as Iran. Understanding the molecular basis of resistance to antimonials could be helpful to improve treatment strategies. This study aimed to recognize genes involved in antimony resistance of Leishmania tropica field isolates. Sensitive and resistant L. tropica parasites were isolated from anthroponotic cutaneous leishmaniasis patients and drug susceptibility of parasites to meglumine antimoniate (Glucantime$^{(R)}$) was confirmed using in vitro assay. Then, complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) and real-time reverse transcriptase-PCR (RT-PCR) approaches were utilized on mRNAs from resistant and sensitive L. tropica isolates. We identified 2 known genes, ubiquitin implicated in protein degradation and amino acid permease (AAP3) involved in arginine uptake. Also, we identified 1 gene encoding hypothetical protein. Real-time RT-PCR revealed a significant upregulation of ubiquitin (2.54-fold), and AAP3 (2.86-fold) (P<0.05) in resistant isolates compared to sensitive ones. Our results suggest that overexpression of ubiquitin and AAP3 could potentially implicated in natural antimony resistance.

Keywords

References

  1. Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet 2005; 366: 1561-1577. https://doi.org/10.1016/S0140-6736(05)67629-5
  2. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, Boer Md, the WHOLCT. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 2012; 7: e35671. https://doi.org/10.1371/journal.pone.0035671
  3. Statistics of Cutaneous Leishmanaisis in Iran: Hearing before National Leishmaniasis Committee, Office of Zoonoses, Diseases Management Center, Ministry of Health and Medical Education (2004).
  4. Talari SA, Talaei R, Shajari G, Vakili Z, Taghaviardakani A. Childhood cutaneous leishmaniasis: report of 117 cases from Iran. Korean J Parasitol 2006; 44: 355-360. https://doi.org/10.3347/kjp.2006.44.4.355
  5. Kedzierski L, Sakthianandeswaren A, Curtis JM, Andrews PC, Junk PC, Kedzierska K. Leishmaniasis: current treatment and prospects for new drugs and vaccines. Curr Med Chem 2009; 16: 599-614. https://doi.org/10.2174/092986709787458489
  6. Sundar S. Drug resistance in Indian visceral leishmaniasis. Trop Med Int Health 2002; 6: 849-854.
  7. Hadighi R, Mohebali M, Boucher P, Hajjaran H, Khamesipour A, Ouellette M. Unresponsiveness to glucantime treatment in Iranian cutaneous leishmaniasis due to drug-resistant Leishmania tropica parasites. PLoS Med 2006; 3: e162. https://doi.org/10.1371/journal.pmed.0030162
  8. Ashutosh, Sundar S, Goyal N. Molecular mechanisms of antimony resistance in Leishmania. J Med Microbiol 2007; 56: 143- 153. https://doi.org/10.1099/jmm.0.46841-0
  9. Haimeur A, Guimond C, Pilote S, Mukhopadhyay R, Rosen BP, Poulin R, Ouellette M. Elevated levels of polyamines and trypanothione resulting from overexpression of the ornithine decarboxylase gene in arsenite-resistant Leishmania. Mol Microbiol 2002; 34: 726-735.
  10. Marquis N, Gourbal B, Rosen BP, Mukhopadhyay R, Ouellette M. Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol 2005; 57: 1690-1699. https://doi.org/10.1111/j.1365-2958.2005.04782.x
  11. El Fadili K, Messier N, Leprohon P, Roy G, Guimond C, Trudel N, Saravia NG, Papadopoulou B, Legare D, Ouellette M. Role of the ABC transporter MRPA (PGPA) in antimony resistance in Leishmania infantum axenic and intracellular amastigotes. Antimicrob Agents Chemother 2005; 49: 1988-1993. https://doi.org/10.1128/AAC.49.5.1988-1993.2005
  12. Vergnes B, Gourbal B, Girard I, Sundar S, Drummelsmith J, Ouellette M. A proteomics screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death. Mol Cell Proteomics 2007; 6: 88-101.
  13. Walker J, Gongora R, Vasquez JJ, Drummelsmith J, Burchmore R, Roy G, Ouellette M, Gomez MA, Saravia NG. Discovery of factors linked to antimony resistance in Leishmania panamensis through differential proteome analysis. Mol Biochem Parasitol 2012; 183: 166-176. https://doi.org/10.1016/j.molbiopara.2012.03.002
  14. Do Monte-Neto RL, Coelho AC, Raymond F, Legare D, Corbeil J, Melo MN, Frezard F, Ouellette M. Gene expression profiling and molecular characterization of antimony resistance in Leishmania amazonensis. PLoS Negl Trop Dis 2011; 5: e1167. https://doi.org/10.1371/journal.pntd.0001167
  15. Hajjaran H, Azarian B, Mohebali M, Hadighi R, Assareh A, Vaziri B. Comparative proteomics study on meglumine antimoniate sensitive and resistant Leishmania tropica isolated from Iranian anthroponotic cutaneous leishmaniasis patients. East Mediterr Health J 2012; 18: 165-171.
  16. Vuylsteke M, Peleman JD, van Eijk MJ. AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis. Nat Protoc 2007; 2: 1399-1413. https://doi.org/10.1038/nprot.2007.174
  17. Farahyar S, Zaini F, Kordbacheh P, Rezaie S, Safara M, Raoofian R, Heidari M. Overexpression of aldo-keto-reductase in azole-resistant clinical isolates of Candida glabrata determined by cDNAAFLP. DARU 2013; 21: 1-7. https://doi.org/10.1186/2008-2231-21-1
  18. Saffari M, Dinehkabodi OS, Ghaffari SH, Modarressi MH, Mansouri F, Heidari M. Identification of novel p53 target genes by cDNA AFLP in glioblastoma cells. Cancer Lett 2009; 273: 316- 322. https://doi.org/10.1016/j.canlet.2008.08.020
  19. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-deltadeltact method. Methods 2001; 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  20. Welchman RL, Gordon C, Mayer RJ. Ubiquitin and ubiquitinlike proteins as multifunctional signals. Nat Rev Mol Cell Biol 2005; 6: 599-609. https://doi.org/10.1038/nrm1700
  21. Sherman MY, Goldberg AL. Cellular defenses against unfolded proteins: A cell biologist thinks about neurodegenerative diseases. Neuron 2001; 29: 15-32. https://doi.org/10.1016/S0896-6273(01)00177-5
  22. Ciechanover A. Intracellular protein degradation: from a vague idea, through the lysosome and the ubiquitin-proteasome system, and onto human diseases and drug targeting (nobel lecture). Angew Chem Int Ed Engl 2005; 44: 5944-5967. https://doi.org/10.1002/anie.200501428
  23. Tsirigotis M, Zhang M, Chiu RK, Wouters BG, Gray DA. Sensitivity of mammalian cells expressing mutant ubiquitin to proteindamaging agents. J Biol Chem 2001; 276: 46073-46078. https://doi.org/10.1074/jbc.M109023200
  24. Fujimuro M, Nishiya T, Nomura Y, Yokosawa H. Involvement of polyubiquitin chains via specific chain linkages in stress response in mammalian cells. Biol Pharm Bull 2005; 28: 2315-2318. https://doi.org/10.1248/bpb.28.2315
  25. Del Razo LM, Quintanilla-Vega B, Brambila-Colombres E, Calderón- Aranda ES, Manno M, Albores A. Stress proteins induced by arsenic. Toxicol Appl Pharmacol 2001; 177: 132-148. https://doi.org/10.1006/taap.2001.9291
  26. Leonard SS, Harris GK, Shi X. Metal-induced oxidative stress and signal transduction. Free Radic Biol Med 2004; 37: 1921-1942. https://doi.org/10.1016/j.freeradbiomed.2004.09.010
  27. Klemperer N, Pickart C. Arsenite inhibits two steps in the ubiquitin- dependent proteolytic pathway. J Biol Chem 1989; 264: 19245-19252.
  28. Cheng L, Watt R, Piper P. Polyubiquitin gene expression contributes to oxidative stress resistance in respiratory yeast (Saccharomyces cerevisiae). Mol Gen Genet 1994; 243: 358-362. https://doi.org/10.1007/BF00301072
  29. Friant S, Meier KD, Riezman H. Increased ubiquitin-dependent degradation can replace the essential requirement for heat shock protein induction. EMBO J 2003; 22: 3783-3791. https://doi.org/10.1093/emboj/cdg375
  30. Akerman M, Shaked-Mishan P, Mazareb S, Volpin H, Zilberstein D. Novel motifs in amino acid permease genes from Leishmania. Biochem Biophys Res Commun 2004; 325: 353-366. https://doi.org/10.1016/j.bbrc.2004.09.212
  31. Shaked-Mishan P, Suter-Grotemeyer M, Yoel-Almagor T, Holland N, Zilberstein D, Rentsch D. A novel high-affinity arginine transporter from the human parasitic protozoan Leishmania donovani. Mole Microbiol 2006; 60: 30-38. https://doi.org/10.1111/j.1365-2958.2006.05060.x
  32. Colotti G, Ilari A. Polyamine metabolism in Leishmania: from arginine to trypanothione. Amino Acids 2011; 40: 269-285. https://doi.org/10.1007/s00726-010-0630-3
  33. Fairlamb AH, Cerami A. Metabolism and functions of trypanothione in the kinetoplastida. Annu Rev Microbiol 1992; 46: 695- 729. https://doi.org/10.1146/annurev.mi.46.100192.003403
  34. Mukhopadhyay R, Dey S, Xu N, Gage D, Lightbody J, Ouellette M, Rosen BP. Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc Natl Acad Sci USA 1996; 93: 10383-10387. https://doi.org/10.1073/pnas.93.19.10383

Cited by

  1. Visceral Leishmaniasis without Fever in an 11-Month-Old Infant: a Rare Clinical Feature of Kala-azar vol.52, pp.2, 2014, https://doi.org/10.3347/kjp.2014.52.2.189
  2. Expression analysis of viscerotropic leishmaniasis gene in Leishmania species by real-time RT-PCR vol.61, pp.1, 2016, https://doi.org/10.1515/ap-2016-0011
  3. Expression analysis of activated protein kinase C gene (LACK1) in antimony sensitive and resistant Leishmania tropica clinical isolates using real‐time RT‐PCR vol.55, pp.9, 2013, https://doi.org/10.1111/ijd.13321
  4. Comparative transcriptomic analysis of antimony resistant and susceptible Leishmania infantum lines vol.13, pp.1, 2020, https://doi.org/10.1186/s13071-020-04486-4
  5. Metabolite Biomarkers of Leishmania Antimony Resistance vol.10, pp.5, 2013, https://doi.org/10.3390/cells10051063