• 제목/요약/키워드: Cutaneous horn

검색결과 10건 처리시간 0.03초

편평상피암과 연관된 거대피각 1례 (Giant Cutaneous Horn Associated with Squamous Cell Carcinoma: A Case Report)

  • 이정훈
    • Archives of Plastic Surgery
    • /
    • 제32권5호
    • /
    • pp.645-648
    • /
    • 2005
  • Cutaneous horn is a morphologic designation for a projectile, conical, dense hyperkeratotic nodule that resembles the horn of an animal. The lesion varies in size from only a few millimeters to several centimeters, in color(white or yellowish) and in form (straight, curved, or twisted). It arises from a wide range of epidermal lesions, which include benign lesions, premalignant lesions and malignant lesions. An 83-year-old women came to our clinic with a giant cutaneous horn on the right chin and a small horn on the left upper eyelid. The patient had no palpable cervical lymph node. A wide elliptical skin incision was made and the horn was totally excised. In pathology, the giant cutaneous horn on the right chin revealed a moderately differentiated squamous cell carcinoma with subcutis invasion at its base. "Giant cutaneous horns" have often been associated with invasive squamous cell carcinoma. Cutaneous horns are common lesions usually found on the face, rarely larger than 2 cm. As large cutaneous horns are often associated with underlying malignancy, histopathologic examination of the base of the lesion is necessary to rule out carcinoma and full excision is recommended.

코에서 선천성 섬유상피폴립이 피부뿔로 발현한 환자 증례보고 (Congenital Fibroepithelial Polyp Presenting as a Cutaneous Horn on the Nasal Tip: A Case Report)

  • 권용석;전동근;이명철;최현곤;신동혁;김지남
    • 대한두경부종양학회지
    • /
    • 제36권2호
    • /
    • pp.33-36
    • /
    • 2020
  • Cutaneous horn is the clinical entity, which is circumscribed, conical, markedly hyperkeratotic lesion in which the height of the keratotic mass amounts to at least half of its largest diameter. It may be associated with many different pathological lesions. It is a relatively rare and a kind of epidermal tumor that generally appears as a conical projection. Here, we report rare case of congenital cutaneous horn. A 39-month-old female Korean patient presented at our clinic with a mass at the tip of her nose present since birth. Under general anesthesia, cutaneous horn of nasal tip was completely excised without any complications. The operation site was small enough to perform a primary closure, without any nasal deformity. Histopathologically, it was reported as a fibroepithelial polyps. After operation, there is no evidence of recurrence at 16 months of follow-up.

Cutaneous Horn in Premalignant and Malignant Conditions

  • Park, Hyochun;Kim, Wonwoo;Kim, Hoonnam;Yeo, Hyeonjung
    • 대한두개안면성형외과학회지
    • /
    • 제17권1호
    • /
    • pp.25-27
    • /
    • 2016
  • Cutaneous horns are conical, circumscribed protuberances formed by densely layered keratin. These lesions originate from basal keratinocytes and may manifest as benign, premalignant, or malignant cutaneous pathology in chronically sun-damaged areas. Complete surgical excision with histologic examination is needed for potential malignancy. In this report, we describe two elderly women presenting with solitary facial cutaneous horns, which were respectively diagnosed as actinic keratosis and squamous cell carcinoma.

Conduction Block of the Primary Afferent Fibers by Topically Applied Allyl Isotheocyanate

  • Shin, Hong-Kee;Kim, Kee-Soon
    • The Korean Journal of Physiology
    • /
    • 제28권2호
    • /
    • pp.123-132
    • /
    • 1994
  • The present study was undertaken to elucidate the desensitization of cutaneous receptors and the conduction block of the afferent nerves induced by direct application of allyl isotheocyanate (mustard oil) to the receptive field (RF) or onto the afferent nerve, respectively. Dorsal horn cell responses to mechanical stimulations of RF were completely suppressed when mustard oil was applied to either the afferent nerve or the whole area of RF. C-fiber responses of dorsal horn cells were more susceptive to mustard oil than A-fiber activities. This was confirmed by the experiment in which the compound action potentials recorded from rat tibial nerve before and after topical application of mustard oil were compared. The higher the concentration of mustard oil and the longer the application time, the more powerful desensitization or conduction block was induced. From the results of the present study, it is suggested that the desensitization of the afferent fiber and sensory receptors induced by mustard oil results mainly from the conduction block of C-fiber in the primary afferent nerve.

  • PDF

랫드 척수후각 단일세포 분리 및 특성에 관한 연구 (Isolation and Electrical Characterization of the Rat Spinal Dorsal Horn Neurons)

  • 한성규;류판동
    • 대한약리학회지
    • /
    • 제32권2호
    • /
    • pp.283-292
    • /
    • 1996
  • The spinal dorsal horn is the area where primary afferent fibers terminate and cutaneous sensory information is processed. A number of putative neurotransmitter substances, including excitatory and inhibitory amino acids and peptides, are present in this region. In this study, single neurons of the spinal dorsal horn were acutely isolated and the properties of whole cell current and responses to excitatory and inhibitory neurotransmitters were studied by patch clamp technique. Transverse slice ($(300{\mu}m$) of lumbar spinal cords from young rats$(7{\sim}14\;days)$ were sequentially treated with two pretenses(pronase 0.75 mg/ml and thermolysin 0.75 mg/ml), then single neurons were mechanically dissociated. These neurons showed near-intact morphology such as multipolar, ellipsoidal and bipolar, and pyramidal cells and we recorded the typical whole cell currents of $K^+$, $Ca^{2+}$ and ligand-operated channels from these neurons. Glutamate $(30{\mu}M)$ and N-methyl-D-aspartate(NMDA, $30{\mu}M)$ induced inward currents of $117{\pm}12.4$ pA(n=5) and $49{\pm}6.9$ pA(n=3), respectively. Glycine $(1{\mu}M)$ potentiated glutamate-induced currents $4{\sim}5$ times and NMDA-induced currents $8{\sim}10$ times. In addition, glycine $(30{\mu}M)$ induced Inward current ($31{\pm}6.1$ nA, n=2), which was rapidly desensitized after the peak to a new steady-state level. However, the inward currents induced by ${\gamma}-amino$ butyric acid(GABA, $1{\mu}M$) decreased continuously after the peak($226{\pm}41.6$ pA, n=3) under the similar experimental condition. The ionic currents and pharmacological responses of isolated neurons in this work were similar to those observed in vivo or in vitro spinal cord slice, indicating that acutely isolated neurons could be effectively used for further pharmacological studies.

  • PDF

Isolation and electrical characterization of the rat spinal dorsal horn neurons

  • Han, Seong-Kyu;Lee, Mun-Han;Ryu, Pan-Dong
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.175-175
    • /
    • 1996
  • The spinal dorsal horn is the area where primary afferent fibers terminate and cutaneous sensory information is Processed. A number of putative neurotransmitter substances, including excitatory and inhibitory amino acids and peptides, are present in this region and sites and cellular mechanisms of their actions have been a target of numerous studies. In this study, single neurons were acutely isolated and the properties of whole cell current and responses to excitatory and inhibitory neurotransmitters were studied by the patch clamp method. Young rats (7-14 days) were anesthetized with diethyl-ether, and the lumbar spinal cord was excised and cut transversely at a thickness of 30$\mu\textrm{m}$ by Vibroslicer. The treatment of spinal slices with low concentration of proteases (pronase and thermolysin 0.75 mg/$m\ell$) and mechanical dissociation yielded isolated neurons with near intact morphology. Multipolar, ellipsoidal and bipolar, and pyramidal cells were shown. By applying step voltage pulses to neurons held at -70 mV, two types of inward currents and one outward currents observed. The fast activating and inactivating inward current was the Na$\^$+/ current because of its fast kinetics and blocking by 0.5${\mu}$M TTX, a specific blocker of Na$\^$+/ channel. The second type of inward currents were sustained. Based on their kinetics and current-voltage relations, it was likely that the second type of inward current was the voltage-dependent Ca$\^$2+/ current. In the presence of TTX, the steady-state currents mainly represented outward K$\^$+/ current which looked like the delayed rectifier K$\^$+/ current. In addition, the membrane currents produced by agonist of excitatory amino acid (EAA) receptor and the endogenous transmitter candidate L-glutamate were recorded in isolated whole-cell voltage clamped neurons as well as responses to inhibitory amino acids (${\gamma}$-amino butyric acid, glycine). Drugs were applied by a method that allows complete exchange of the solution within 1 sec; an infinite number of solutions can be applied to a single cell.

  • PDF

Magnesium Suppresses the Responses of Dorsal Horn Cell to Noxious Stimuli in the Rat

  • Shin, Hong-Kee;Kim, Jin-Hyuk;Kim, Kee-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권3호
    • /
    • pp.237-244
    • /
    • 1999
  • Magnesium ion is known to selectively block the N-methyl-D-aspartate (NMDA)-induced responses and to have anticonvulsive action, neuroprotective effect and antinociceptive action in the behavioral test. In this study, we investigated the effect of $Mg^{2+}$ on the responses of dorsal horn neurons to cutaneous thermal stimulation and graded electrical stimulation of afferent nerves as well as to excitatory amino acids and also elucidated whether the actions of $Ca^{2+}$ and $Mg^{2+}$ are additive or antagonistic. $Mg^{2+}$ suppressed the thermal and C-fiber responses of wide dynamic range (WDR) cell without any effect on the A-fiber responses. When $Mg^{2+}$ was directly applied onto the spinal cord, its inhibitory effect was dependent on the concentration of $Mg^{2+}$ and duration of application. The NMDA- and kainate-induced responses of WDR cell were suppressed by $Mg^{2+}$, the NMDA-induced responses being inhibited more strongly. $Ca^{2+}$ also inhibited the NMDA-induced responses current-dependently. Both inhibitory actions of $Mg^{2+}$ and $Ca^{2+}$ were additive, while $Mg^{2+}$ suppressed the EGTA-induced augmentation of WDR cell responses to NMDA and C-fiber stimulation. Magnesium had dual effects on the spontaneous activities of WDR cell. These experimental findings suggest that $Mg^{2+}$ is implicated in the modulation of pain in the rat spinal cord by inhibiting the responses of WDR cell to noxious stimuli more strongly than innocuous stimuli.

  • PDF

Complete Freund Adjuvant에 의한 피부염증에서 통각과민현상의 기전 (Mechanism of Hyperalgesia Following Cutaneous Inflammation by Complete Freund Adjuvant)

  • 정용;임중우;정승수;김윤숙;윤덕미;남택상;백광세
    • The Korean Journal of Pain
    • /
    • 제13권2호
    • /
    • pp.164-174
    • /
    • 2000
  • Background: After an injury to tissue such as the skin, hyperalgesia develops. Hyperalgesia is characterized by an increase in the magnitude of pain evoked by noxious stimuli. It has been postulated that in the mechanism of hyperalgesia (especially secondary hyperalgesia) and allodynia, a sensitization of central nervous system such as spinal dorsal horn may contribute to development of hyperalgesia. However, the precise mechanism is still unclear. In the present study, we investigated the roles of N-methyl-D-aspartate (NMDA) receptor and nitric oxide (NO) system in the mechanism of hyperalgesia, and their relations with c-fos expression Methods: Inflammation was induced by injection of complete Freund adjuvant (CFA) into unilateral hindpaw of Sprague-Dawley rat. Behavioral studies measuring paw withdrawal responses by von Frey filaments and paw withdrawal latencies by radiant heat stimuli and stainings of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase and c-fos immunoreactivity were performed. The effects of MK-801, an NMDA receptor blocker and $N^\omega$-nitro-L-arginine (L-NNA), a nitric oxide synthase (NOS) inhibitor were evaluated. Results: 1) Injection of CFA induced mechanical allodynia, mechanical hyperalgesia and thermal hyperalgesia. And it increased the number of NADPH-diaphorase positive neurons and c-fos expression neurons. 2) MK-801 inhibited mechanical hyperalgesia and thermal hyperalgesia induced by CFA and reduced the number of NADPH-diaphorase positive neurons and c-fos expression neurons. 3) L-NNA inhibited the thermal hyperalgesia and reduced the number of NADPH-diaphorase positive neurons, but did not affect the number of c-fos expression neurons. Conclusions: These results suggest that in the mechanism of mechanical hyperalgesia, NMDA receptor but not NO-system is involved and in the case of thermal hyperalgesia both NMDA receptor and NO system are involved. NO system did not affect the expression of c-fos, but c-fos expression and NOS activity were dependent on the activity of NMDA receptor.

  • PDF