• Title/Summary/Keyword: Cut-off soil slope

Search Result 8, Processing Time 0.026 seconds

Stability analyses of railroad cut-off soil slopes considering rainfall infiltration (강우에 의한 침투를 고려한 철도 절개 토사 사면의 안정해석)

  • Lee, Su-Hyung;Hwang, Seon-Keun;Kim, Hyun-Ki;SaGong, Myung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.811-818
    • /
    • 2005
  • Stability analyses on the 17 railroad cut-off soil slopes were carried out. The influences of rainfall infiltration on the slope stabilities were taken into account by seepage analyses using finite element method and by assuming ground water tables to be located adjacent to soil surface. The validity of those analyses were evaluated by comparing the slope failure characteristics between analysis results and the past failure records. The analyses were not appropriate to estimate the failure surface and the method considering only the increase of pore-water pressure (reduction of matric suction) as the influence of rainfall cannot appropriately estimate the surficial failures that occurred most of the cut-off soil slopes. For the better estimation of the surficial failure, the influence of water flows over slope surface which erode soil mass and/or increase driving force, should be evaluated and considered.

  • PDF

Adequacy Evaluation of Stability Analyses Considering Rainfall Infiltration on Railroad Cut-off Soil Slopes (철도연변 절취 토사사면에 대한 강우에 의한 침투를 고려한 사면안정해석법의 적용성 평가)

  • Lee Su-Hyung;Hwang Seon-Keun;Sagong Myung;Kim Hyun-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.137-146
    • /
    • 2005
  • 299 railroad slopes were investigated and the failure characteristics and reinforcement patterns were analyzed. Stability analyses on the 14 cut-off soil slopes were carried out. Surficial failures were predicted by infinite slope analyses assuming the temporarily perched ground water table at soil surface during rainfall period. Limit equilibrium analyses were also carried out and the influences of rainfall infiltration on the slope stabilities were taken Into account by seepage analyses using finite element method and by assuming ground water tables to be located adjacent to soil surface. The adequacy of those analyses was evaluated by comparing the slope failure characteristics between analysis results and the past failure records. From the comparison results, it was deduced that the limit equilibrium analyses were not appropriate to estimate the shallow failure that occurred at most of the railroad cut-off soil slopes. For the better estimation of the surficial failure, not only the increase of pore-water pressure (reduction of matric suction), but also the influence of water flows over slope surface which erode soil mass, should be evaluated and considered.

Characteristics of Several Korean Native Herbaceous Plants for Cut Slope Revegetation (몇 가지 자생 초화류의 사면녹화 특성)

  • Song, Jeong-Seob;Chang, Young-Deug;Lee, Sang-Jeong;Bang, Chang-Seok;Huh, Kun-Yang;Chung, Meyong-Il;Chung, Hyun-Hwan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.10-16
    • /
    • 2005
  • This experiment was conducted to study on application of several Korean native plants by seed spray methods for cut slope revegetation, and possibility of replacement almost imported tall fescue seeds by native herbaceous plants. So, we investigated growth and covering rate after sowing native plants seeds at the artificial slope plots in Suwon and the rock exposed cut-slopes in Wonju city. Emergence rate after seed spray at artificial slopes were higher Elsholtzia splendens and Dianthus superbus var. longicalycinus, showing the highest in E. splendens. Also, E. splendens, D. superbus var. longicalycinus, and Agrostemma coronaria were possible to use for seed spray at the rock exposed cut-slopes. The plots of mixed native plants show more seasonal scenery than that of tall fescue. Soil surface run-off by Typhoon was less in plot sown native plants than those of lawn grass, resulting fresh weight of roots was heavier. Thus, we found that the mixed seed spray of several native herbaceous plants, E. splendens, D. superbus var. longicalycinus, and Agrostemma coronaria, were well covered the slopes as tall fescue.

Numerical Studies for the Safety Estimation of Box-Culvert in Levee (수치해석을 이용한 하천제방 배수통문의 안정성 평가 연구)

  • Kim Jin-Man;Choi Bong-Hyuck;Oh Se-Yong;Kim Kyung-Min
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.479-486
    • /
    • 2006
  • In this study, 2-D seepage analysis is conducted for the evaluation of Box-Culvert installation, Cut-off Wall Length, permeability reduction of soil under the Box-Culvert effects on Levee Box-Culvert safety. The result of analysis it is obtained that the safety of seepage and slope stability of levee is declined by the installation of Box-Culver. And also obtained that the piping from poor compaction and cavity around Box-Culvert Is Prevented by the Cut-off wall installation below breast wall and levee toe, so it is recommended that the Cut-off Wall below breast wall and levee toe must be installed. And the Cut-off Wall installed below levee center is considered when the safety of piping is declined for the whole levee section. On the other hand, for the realistic analysis it is recommended that the 3-D seepage analysis is more suitable for the safety evaluation of Box-Culvert installed levee when it is considered that the saturated field is dispersed to the ground.

Studies on Partial Revegetation of Rock Cut-Slope by Direct Seeding of Woody Species Seeds (수목종자 직파에 의한 암반절개사면 부분녹화)

  • Hong, Sung-Gak;Kim, Jong-Jin;Lee, Duck-Soo;Lee, Ki-Cheol;Yoon, Teok-Seong
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.3
    • /
    • pp.265-271
    • /
    • 1999
  • The direct seeding of seeds or the pellets of three native tree species (Pinus densiflora, Parthenocissus tricuspidata and Rhus chinensis) was tried on the rock cut-slope revegetation bed established by construction of mechanical excavation or erosion break with artificially enriched soil medium. The seed $pellet(1{\sim}2\;cubic\;cm)$ made by coating seeds(treated with proper previous pregermination treatments) with the mixture of peatmoss, clay, chemical absorbant(3.5:1.0:0.2, v/v) showed about twice better percent germination than the control seeds. The percent germination and the survival rate of the germinated seedlings were higher in the spring direct seeding than the summer or the fall. The soil medium containing the compost showed extremely low percent $germination(0{\sim}3%)$ which presumably attributed to the compost inducing damping-off disease. The survival rates were affected mainly by shading of natural herbaceous vegetation invading from outside to the revegetation bed. The planting of two year old container seedlings of P. densiflora and P. tricuspidata on August 2, 1998 was successful indicating that it could be an alternative revegetation method in case the summer direct seeding is unfavorable.

  • PDF

Analysis on Change of Construction Type for the Non-national Forest Road in Jeollabuk-do (전라북도 민유임도의 시기별 공종변화에 관한 연구)

  • Son, Jae-Ho;Park, Chong-Min;Lee, Joon-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.6
    • /
    • pp.652-660
    • /
    • 2007
  • The study was intended to investigate the changes of construction types of 216 non-national forest roads, which were completed between 1989 and 2005 in Jeollabuk-do, by analyzing their drawing and specification. It was found that the mean length of yearly construction has been significantly reduced after the Policy of Green Forest Roads compared with before the policy. Soil cut-off of earth work was changed from bulldozer to a combination of bulldozer and excavator. Soils were transported by truck in all design, but establishment of spoil-bank was not designed at all. The design of slope revegetation works was developed from turfing and Bastard indigo planting to seed spray, combination of seed spray and belt-sodding, and mulching with coir net and rice straw. In design of the culvert, the average interval of culvert installation was reduced to 92m in step 3, the dimension of culverts was expanded to over 600 mm after step 2, and all drainpipes were corrugated steel pipes. The design length of concrete pavement increased from 40 m/km of step 1 to 240 m/km of step 3. Thanks to the enormously increased amount of concrete pavement, the stability and functionality of forest roads could be improved. Stone masonry was the main work drawn for slope stability, and concrete retaining wall and gabion have been drawn for same object since 1999.

Studies on Soil Conservation Effects of the Straw-mat Mulching (III) -Effects of the Mat Structures and Its Practicality- (볏짚거적덮기공법(工法)의 사방효과(砂防效果)에 관(關)한 연구(硏究)(III) -거적 밀도(密度)의 영향(影響) 및 공법(工法)의 실용성(實用性)-)

  • Woo, Bo-Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.27 no.1
    • /
    • pp.5-14
    • /
    • 1975
  • Eroded sloping faces in hillsides including cut-bank slopes are liable to both surface erosion and land-slides and the key to control of these form of erosion lies with drainages of excessive run-off and dense vegetation establishment including surface mulching on the slopes. Micro-plots having $1.6m^2$ (1 metre in width and 1.6 metres in slope length, and 1:1.2 in gradient) of banking slopes on coarse sand soil are used to establish the order of magnititude of the difference in controlling of soil erosion and water runoff, and in rating of survival, performed on the repetetions of three-experiment plots consisted of such three levels as 90% (Dense), 70% (Moderate), and 50% Sparse of the density of the coarse straw-mat mulchings. The main results obtained may be summarized as follows: 1. The rates of surface runoff are calculated as 13.13% from the dense mulchings, 14.21% from the moderate mulchings, and 15.57% from the sparse mulchings respectively. 2. The total amounts of soil loss are measured as about 1.24 tons/ha. from the dense mulchings, about 1.33 tons/ha. from the moderate mulchings, and about 1.44 tons/ha. from the sparse mulchings respectively. The amounts of soil loss under these treatments are much lower than the standard of erosion in USDA (1939 Bennet). 3. Average numbers of germination by treatment are counted as 80 seedlings at the dense mulchings. 132 at the moderates and 121 at the sparse respectively. Large numbers of seedling are suppressed and died during the growing at the dense mulchings due to mainly mechanical obstruction. 4. Coarse straw-mat having about 70% of coverage density is the most suitable mulches in both soil erosion control and vegetation establishment. 5. The method of coarse straw-mat mulching is the most recommendable measure for establishing the vegetation cover with less soil erosion on the denuded gentle slopes in hillsides at present in Korea.

  • PDF

A Study on a Calculation Method of Economical Intake Water Depth in the Design of Head Works (취입모의 경제적 계획취입수심 산정방법에 대한 연구)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4592-4598
    • /
    • 1978
  • The purpose of this research is to find out mathemetically an economical intake water depth in the design of head works through the derivation of some formulas. For the performance of the purpose the following formulas were found out for the design intake water depth in each flow type of intake sluice, such as overflow type and orifice type. (1) The conditional equations of !he economical intake water depth in .case that weir body is placed on permeable soil layer ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } { Cp}_{3 }L(0.67 SQRT { q} -0.61) { ( { d}_{0 }+ { h}_{1 }+ { h}_{0 } )}^{- { 1} over {2 } }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { dcp}_{3 }L+ { nkp}_{5 }+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ] =0}}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } C { p}_{3 }L(0.67 SQRT { q} -0.61)}}}} {{{{ { ({d }_{0 }+ { h}_{1 }+ { h}_{0 } )}^{ - { 1} over {2 } }- { { 3Q}_{1 } { p}_{ 6} { { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{ 2}m' SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L }}}} {{{{+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 } L+dC { p}_{4 }L+(2 { z}_{0 }+m )(1-s) { L}_{d } { p}_{7 }]=0 }}}} where, z=outer slope of weir body (value of cotangent), h1=intake water depth (m), L=total length of weir (m), C=Bligh's creep ratio, q=flood discharge overflowing weir crest per unit length of weir (m3/sec/m), d0=average height to intake sill elevation in weir (m), h0=freeboard of weir (m), Q1=design irrigation requirements (m3/sec), m1=coefficient of head loss (0.9∼0.95) s=(h1-h2)/h1, h2=flow water depth outside intake sluice gate (m), b=width of weir crest (m), r=specific weight of weir materials, d=depth of cutting along seepage length under the weir (m), n=number of side contraction, k=coefficient of side contraction loss (0.02∼0.04), m2=coefficient of discharge (0.7∼0.9) m'=h0/h1, h0=open height of gate (m), p1 and p4=unit price of weir body and of excavation of weir site, respectively (won/㎥), p2 and p3=unit price of construction form and of revetment for protection of downstream riverbed, respectively (won/㎡), p5 and p6=average cost per unit width of intake sluice including cost of intake canal having the same one as width of the sluice in case of overflow type and orifice type respectively (won/m), zo : inner slope of section area in intake canal from its beginning point to its changing point to ordinary flow section, m: coefficient concerning the mean width of intak canal site,a : freeboard of intake canal. (2) The conditional equations of the economical intake water depth in case that weir body is built on the foundation of rock bed ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { nkp}_{5 }}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0 }}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{6 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{2 }m' SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0}}}} The construction cost of weir cut-off and revetment on outside slope of leeve, and the damages suffered from inundation in upstream area were not included in the process of deriving the above conditional equations, but it is true that magnitude of intake water depth influences somewhat on the cost and damages. Therefore, in applying the above equations the fact that should not be over looked is that the design value of intake water depth to be adopted should not be more largely determined than the value of h1 satisfying the above formulas.

  • PDF