• Title/Summary/Keyword: Cut-Slope

Search Result 424, Processing Time 0.027 seconds

An Analytical Study on the Revegetation Methods for Highway Slopes (고속도로 절·성토 비탈면 녹화 공법의 적용 실태 연구)

  • Kim, Namchoon;Song, Hokyung;Park, Gwansoo;Jeon, Giseong;Lee, Sanghwa;Lee, Byungjoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.2
    • /
    • pp.1-15
    • /
    • 2007
  • A variety of revegetation methods are being utilized and developed. However, most of revegetation methods used on highway slopes in Korea are based on foreign-introduced plant varieties to stabilize road surfaces and to administer afforestation for surface covering at an earlier phase. Therefore. it results in various problems. such as failure to achieve harmony with the surrounding vegetation and 10 cause re-denudation of slopes as the foreign-in introduced plant varieties wane out from 2~3 years after hydro-seeding, etc. In addition, some of the revegetation plants seeded in the earlier phase grow excessively high, thus causes successional problems, such as to inhibit the invasion of the secondary vegetation from the surrounding areas, etc. Therefore, in this study, 160 slopes located in the nationwide express highways have been investigated and analyzed in order to produce basic data for restoration of ecological environment in slopes created on a long-term basis by investigating and analyzing locational characteristics of cut and filled slopes in express highways, status of revegetation methods, characteristics of soil and plant-ecological environment. 1. Investigation on cut and embanked slopes in express highways was carried out in the total of 160 locations, which include 108 cut slopes and 52 embanked slopes. As a whole, the most frequently used revegetation method was seed spray, which was found to be used in the total of 55 target slops investigated. 2. Planting method of Wistaria floribunda applied to some of the blasted rock zones was found to cause damages as Wistaria floribunda trailed up the surrounding vegetation and the secondary invaded trees. In order to prevent this, this method must be used only in the lowest parts of large-sized slopes. Also, it will be required to administer continuous management and maintenance in the areas already planted with this plants. 3. The areas of blasted rock and ripping rock slopes were applied with coir net (net + seeding) method. However, many of these areas failed in achieving ground covering. Most areas where revegetation was in progress, they were covered with Eragrostis curvula(Weeping lovegrass) only. In areas with soil, such as decomposition of granite, where afforestation is difficult. In this slopes, soil base must be improved by hrdroseeding with thin-layer vegetation base application methods in order to achieve success in afforestation with native plants. 4. Woody species, rather than herb species, are more helpful in stabilization of slope surfaces. Therefore, it is important to be able to grow and protect woody species on highway slopes. Growth of woody vegetation is most largely influenced by soil depth. Thus, when hydro-seeding woody plants, it is recommended to apply at the upper layer of the slopes, which is capable to sufficiently provide the fundamentals required in plant growth.

A study on an effect of food waste compost for rock cut-slope revegetation (암비탈면녹화에 음식물퇴비의 활용방안에 관한 연구)

  • Cho Hae-Yong;Chang Pil-Kyu;Kim Hyung-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.4
    • /
    • pp.296-301
    • /
    • 2005
  • This study was conducted to get the basic data on an effect of food waste compost for rock cut-slopese vegetation. Two foreign cool-season grasses and native plants were used for this experiment. Cool-season grasses were Festuca ruba and Lolium perene, Native plants were Amorpha fruticosa, and Indigofera pseudo-tinctoria. Amorpha fruticosa, Indigofera psendo-tinctoria, and Lolium perenne decreased in germination rate and plant height at NaCl concentrations of $0.4\%$ or over suddenly. Festuca rubra occurred to the sudden growth hindrance at NaCl concentrations of $0.2\%$ or over. Amorpha fruticosa and Indigofera pseudo-tinctoria appeared for germination of $45\%$ at all experiment plots. Lolium perenne increased in plant height as trial rate of food waste compost was abundant. Ground cover rate was the highest in Mixture III by $89.3\%$ and was fluctuated from $47.0\%$ after 30 days to $64.1\%$ after 45 days in Mixture 1. Descending order of ground cover rates in 4 treatments was Mixture III, Mixture IV, Mixture II, and Mixture I. As the growth

  • PDF

Investigation of Rock Slope Failures based on Physical Model Study (모형실험을 통한 암반사면의 파괴거동에 대한 연구)

  • Cho, Tae-Chin;Suk, Jae-Uk;Lee, Sung-Am;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.447-457
    • /
    • 2008
  • Laboratory tests for single plane sliding were conducted using the model rock slope to investigate the cut slope deformability and failure mechanism due to combined effect of engineering characteristics such as angle of sliding plane, water force, joint roughness and infillings. Also the possibility of prediction of slope failure through displacement monitoring was explored. The joint roughness was prepared in forms of saw-tooth type having different roughness specifications. The infillings was maintained between upper and lower roughness plane from zero to 1.2 times of the amplitude of the surface projections. Water force was expressed as the percent filling of tension crack from dry (0%) to full (100%), and constantly increased from 0% at the rate of 0.5%/min and 1%/min upto failure. Total of 50 tests were performed at sliding angles of $30^{\circ}$ and $35^{\circ}$ based on different combinations of joint roughness, infilling thickness and water force increment conditions. For smooth sliding plane, it was found that the linear type of deformability exhibited irrespective of the infilling thickness and water force conditions. For sliding planes having roughness, stepping or exponential types of deformability were predominant under condition that the infilling thickness is lower or higher than asperity height, respectively. These arise from the fact that, once the infilling thickness exceeds asperities, strength and deformability of the sliding plane is controlled by the engineering characteristics of the infilling materials. The results obtained in this study clearly show that the water force at failure was found to increase with increasing joint roughness, and to decrease with increasing filling thickness. It seems possible to estimate failure time using the inverse velocity method for sliding plane having exponential type of deformability. However, it is necessary to estimate failure time by trial and error basis to predict failure of the slope accurately.

Nucleophilic Substitution Reactions of Aryl Thiophene-2-carbodithioates with Pyridines in Acetonitrile

  • Oh, Hyuck-Keun;Lee, Jae-Myon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.203-206
    • /
    • 2004
  • The kinetics of reactions between Z-aryl thiophene-2-carbodithioates and X-pyridines in acetonitrile at 60.0 $^{\circ}C$ have been investigated. The Bronsted plots obtained for the pyridinolysis of aryl thiophene-2-carbodithioates are curved, with the center of curvature at $pK_a$ ~ 5.2 ($pK_a^{\circ}$). The Bronsted plots for these nucleophilic reactions show a change in slope from a large ( ${\beta}_X{\cong}$0.78-0.87) to a small ( ${\beta}_X{\cong}$0.33-0.35) value, which can be attributed to a change in the rate-determining step from breakdown to formation of a zwitterionic tetrahedral intermediate in the reaction path as the basicity of the pyridine nucleophile increases. A clear-cut change in the crossinteraction constants, ${\rho}_{XZ}$, from +0.92 to -0.23 supports the proposed mechanistic change. The breakpoint at $pK_a$ = 5.2 for R = thiophene ring in the present work is in agreement with those for the pyridinolysis of R = Me and 2-furyl, and attests to the insignificant effects of acyl group, R, on the breakpoint.

Estimation of Absorbing Capacity from Rockfall Protection Fences (도로 낙석방지울타리의 낙석지지능력 평가 연구)

  • Hwang, Young-Cheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.59-66
    • /
    • 2002
  • Designs for rockfall protection systems must consider rock and soil types, the angle of the slope, conditions on top and the toe of the affected area. Rockfall protection fence is installed to block for falling rock from cut slopes and this is one of the most common rockfall protection measures. The capability of the fence is provided that sum of capability of poly vinyl chloride coated wire mesh, steel support and wire rope respectively. But in some case, the rockfall protection fence was not supported rockfall energy less than total capability of the fence through the full scale rockfall tests. Therefore, the objectives of this paper are to indicate the problems of fence capability and to improve the design specifications for the fence.

  • PDF

Evaluation for Installation and Drain Performance of Mountain Side Ditch in Road Cut Slopes (도로 절토사면 산마루측구 배수성능에 따른 사면안정성 평가)

  • Hwang, Young-Cheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.4
    • /
    • pp.73-79
    • /
    • 2004
  • Mountain side ditch is constructed at the top of cutting slopes around road and it drains the surface water that flowed from upper part. Mountain side ditch is constructed to keep away the influx of the surface water into cutting faces. However, if Mountain side ditch is constructed on the top of cutting slopes, it is cause of trouble. For example, difficulty of quality control and lack of drainage faculty. Therefore, the faculty and establishment propriety of mountain side ditch are evaluated seriously, according to the condition of ground, topography and rainfall in this paper. Results from the study for the numerical analysis of effect of mountain side ditch indicate that safety factor is enlarged about 3% at rainfall.

  • PDF

Characteristics of Tool Deflection of Ball-end Mill Cutter in Pencil Cutting of the Corner (코너부의 펜슬가공시 볼엔드밀의 공구변형 특성)

  • Wang, Duck-Hyun;Yun, Kyung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.123-129
    • /
    • 1999
  • Ball-end milling process is widely used in the die and mold manufacturing because of suitable one for the machining of free-form surface. During the process, the pencil cutting operation can be adopted before finish cut to eliminate overload in uncut area caused by large diameter of ball-end mill. The ball-end mill cutter for the pencil cutting is easily deflected by cutting force due to the long and thin shape, and the tool deflection in pencil cutting is one of the main reason of the machining errors in a free-form surface. The purpose of this study is to find the characteristics of deflected cutter trajectory by constructing measurement system with eddy-current sensor. It was found that the severe reduction of corner radius produced the overcut during the plane cutting. Up cutting method induced the overcut both plane and slope cutting, but down cutting one induced the undercut. From the experiments, down cutting with upward cutting path can generate the small undercut surface.

  • PDF

Case study of Cut-slop failure caused by rock anisotropy (암석의 이방성에 기인한 절토사면 붕괴 사례연구)

  • Jung, Young-Kook;Chang, Buhm-Soo;Shin, Chang-Gun;Lee, Yeon-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.831-837
    • /
    • 2005
  • In this study, a computer program to predict the behavior of laterally loaded single pile and pile groups was developed by using a beam-column analysis in which the soils are modeled as nonlinear springs by a family of p-y curves for subgrade modulus. The special attention was given to the lateral displacement of a single pile and pile groups due to the soil condition and the cap rigidity. The analysis considering group effect was carried out for $2\;{\times}\;2\;and\;3\;{\times}\;3$ pile groups with the pile spacing 3.0B, 4.0B and 5.0B. Based on the results obtained, it is found that the overall distributions of deflection, slope, moment, and shear force in a single pile give a reasonable results irrespective of cap connectivity conditions. It is also found that even though there are some deviations in deflection prediction compared with the observed ones, the prediction by present analysis simulates much better the general trend observed by the centrifuge tests than the numerical solution predicted by PIGLET.

  • PDF

Lateral Pressure on Retaining Wall Close to Stable Slope (안정사면에 인접한 옹벽에 작용하는 수평토압)

  • Jeong, Seong-Gyo;Jeong, Jin-Gyo;Lee, Man-Ryeol
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.19-34
    • /
    • 1997
  • Classical earth pressure theories normally assume that ground condition remains uniform for considerable distance from the wall, and that the movement of the wall is enough to result in the development of an active pressure distribution. In the case of many low gravity walls in cut, constructed, for example, by using gabions or cribs, this is not commonly the case. In strong ground a steep temporary face will be excavated for reasons of economy, and a thin wedge of backfill will be placed behind the wall following its construetion. A designer then has the difficulty of selecting appropriate soil parameters and a reasonable method of calculating the earth pressure on the w리1. This paper starts by reviewing the existing solutions applicable to such geometry. A new silo and a wedge methods are developed for static and dynamic cases, and the results obtained from these are compared with two experimental results which more correctly mod el the geometry and strength of the wall, the fill, and the soil condition. Conclusions are drawn concerning both the magnitute and distribution of earth pressures to be supported by such walls.

  • PDF

Machinability Evaluation of the Plastic Mould Steel using AlTiN Coated Tool (AlTiN코팅공구를 사용한 플라스틱금형강의 기계가공성 평가)

  • Lee, Seung-Chul;Cho, Gyu-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.629-635
    • /
    • 2009
  • In this research, KP-4, one of the plastic mold steels, was coated with the AlTiN from one layer to four layers by the PVD method in the $\Phi$ 8mm cemented carbide ball end mill. Coated KP-4 was processed with various conditions. For example, slope of $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ the spindle rotation speed was changed from 10,000rpm to 16,000rpm, the tool feeding speed was changed from 1,300mm/min to 1,700mm/min, the depth of cut was also changed from 0.3mm to 0.9mm, and etc. Cutting component force according to the coating layer number, and surface roughness were studied. The cutting component force showed a good agreement better the up ward direction than the down ward direction under all experimental conditions. In case of the condition per the material shape, it was lessen when the tool have larger angle because the average effective diameter of the tool is larger. The surface roughness showed good condition in case of the up ward than the down ward direction. And, in the 3rd layer of AlTiN coating, it showed the most suitable condition.

  • PDF