• Title/Summary/Keyword: Customized bolus

Search Result 9, Processing Time 0.025 seconds

A Study on Developing Customized Bolus using 3D Printers (3D 프린터를 이용한 Customized Bolus 제작에 관한 연구)

  • Jung, Sang Min;Yang, Jin Ho;Lee, Seung Hyun;Kim, Jin Uk;Yeom, Du Seok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.61-71
    • /
    • 2015
  • Purpose : 3D Printers are used to create three-dimensional models based on blueprints. Based on this characteristic, it is feasible to develop a bolus that can minimize the air gap between skin and bolus in radiotherapy. This study aims to compare and analyze air gap and target dose at the branded 1 cm bolus with the developed customized bolus using 3D printers. Materials and Methods : RANDO phantom with a protruded tumor was used to procure images using CT simulator. CT DICOM file was transferred into the STL file, equivalent to 3D printers. Using this, customized bolus molding box (maintaining the 1 cm width) was created by processing 3D printers, and paraffin was melted to develop the customized bolus. The air gap of customized bolus and the branded 1 cm bolus was checked, and the differences in air gap was used to compare $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$ and $V_{95%}$ in treatment plan through Eclipse. Results : Customized bolus production period took about 3 days. The total volume of air gap was average $3.9cm^3$ at the customized bolus. And it was average $29.6cm^3$ at the branded 1 cm bolus. The customized bolus developed by the 3D printer was more useful in minimizing the air gap than the branded 1 cm bolus. In the 6 MV photon, at the customized bolus, $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$, $V_{95%}$ of GTV were 102.8%, 88.1%, 99.1%, 95.0%, 94.4% and the $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$, $V_{95%}$ of branded 1cm bolus were 101.4%, 92.0%, 98.2%, 95.2%, 95.7%, respectively. In the proton, at the customized bolus, $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$, $V_{95%}$ of GTV were 104.1%, 84.0%, 101.2%, 95.1%, 99.8% and the $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$, $V_{95%}$ of branded 1cm bolus were 104.8%, 87.9%, 101.5%, 94.9%, 99.9%, respectively. Thus, in treatment plan, there was no significant difference between the customized bolus and 1 cm bolus. However, the normal tissue nearby the GTV showed relatively lower radiation dose. Conclusion : The customized bolus developed by 3D printers was effective in minimizing the air gap, especially when it is used against the treatment area with irregular surface. However, the air gap between branded bolus and skin was not enough to cause a change in target dose. On the other hand, in the chest wall could confirm that dose decrease for small the air gap. Customized bolus production period took about 3 days and the development cost was quite expensive. Therefore, the commercialization of customized bolus developed by 3D printers requires low-cost 3D printer materials, adequate for the use of bolus.

  • PDF

Fabrication of a Patient-Customized Helmet with a Three-Dimensional Printer for Radiation Therapy of Scalp

  • Oh, Se An;Lee, Chang Min;Lee, Min Woo;Lee, Yeong Seok;Lee, Gyu Hwan;Kim, Seong Hoon;Kim, Sung Kyu;Park, Jae Won;Yea, Ji Woon
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.100-105
    • /
    • 2017
  • The purpose of the present study was to develop and evaluate patient-customized helmets with a three-dimensional (3D) printer for radiation therapy of malignant scalp tumors. Computed tomography was performed in a case an Alderson RANDO phantom without bolus (Non_Bolus), in a case with a dental wax bolus on the scalp (Wax_Bolus), and in a case with a patient-customized helmet fabricated using a 3D printer (3D Printing_Bolus); treatment plans for each of the 3 cases were compared. When wax bolus was used to fabricate a bolus, a drier was used to apply heat to the bolus to make the helmet. $3-matic^{(R)}$ (Materialise) was used for modeling and polyamide 12 (PA-12) was used as a material, 3D Printing bolus was fabricated using a HP JET Fusion 3D 4200. The average Hounsfield Unit (HU) for the Wax_Bolus was -100, and that of the 3D Printing_Bolus was -10. The average radiation doses to the normal brain with the Non_Bolus, Wax_Bolus, and 3D Printing_Bolus methods were 36.3%, 40.2%, and 36.9%, and the minimum radiation dose were 0.9%, 1.6%, 1.4%, respectively. The organs at risk dose were not significantly difference. However, the 95% radiation doses into the planning target volume (PTV) were 61.85%, 94.53%, and 97.82%, and the minimum doses were 0%, 77.1%, and 82.8%, respectively. The technique used to fabricate patient-customized helmets with a 3D printer for radiation therapy of malignant scalp tumors is highly useful, and is expected to accurately deliver doses by reducing the air gap between the patient and bolus.

Evaluation of Applicability of Customized Bolus According to 3D Printer Material Characteristics (3D 프린터 소재 특성에 따른 맞춤형 볼루스의 적용성 평가)

  • Kyung-Tae Kwon;Hui-Min Jang;Myeong-Seong Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1091-1097
    • /
    • 2023
  • Bolus is used in radiation therapy to prescribe an even dose to the tumor when the skin surface is inclined or has irregularities. At this time, the dose to the skin surface increases. Due to the patient's unique body structure and irregular skin, voids may occur between the bolus and the skin, which may reduce the accuracy of treatment. Therefore, in this study, the existing bolus and the self-produced bolus through 3D printing were applied to the nasal area, and the difference between the surface dose after treatment plan and the dose directly measured with an Optically Stimulated luminescence(OSL) dosimeter was compared to the existing bolus. The bolus rate was 97%, PLA 100.33%, ePETELA 75A 100.53%, and ePETELA 85A 100.36%. It was confirmed that there was little error in the measurement values and treatment plan values for each material. In addition, compared to when applying a conventional bolus, a difference of -3% to +0.5% for a 3D printed bolus can be confirmed, so a customized bolus produced through 3D printing can complement the shortcomings of the existing bolus. It is believed that there will be.

Evaluation of the effect of a Position Error of a Customized Si-Bolus Produced using a 3D-Printer: Cervical Cancer Radiation Treatment (3D 프린터를 이용하여 제작한 맞춤형 Si-Bolus의 위치 오차 효과 평가: 자궁경부암 방사선 치료)

  • Seong Pyo Hong;Ji Oh Jeong;Seung Jae Lee;Byung Jin Choi;Chung Mo Kim;Soo Il Jung;Yun Sung Shin
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.35
    • /
    • pp.7-13
    • /
    • 2023
  • Purpose: In this study, we evaluated the effect of using a customized bolus on dose delivery in the treatment plan when cervical cancer protruded out of the body along with the uterus and evaluated reproducibility in patient set-up. Materials & Methods: The treatment plan used the Eclipse Treatment Planning System (Version 15.5.0, Varian, USA) and the treatment machine was VitalBeam (Varian Medical Systems, USA). The radiotherapy technique used 6 MV energy in the AP/PA direction with 3D-CRT. The prescribed dose is 1.8 Gy/fx and the total dose is 50.4 Gy/28 fx. Semiflex TM31010 (PTW, Germany) was used as the ion chamber, and the dose distribution was analyzed and evaluated by comparing the planned and measured dose according to each position movement and the tumor center dose. The first measurement was performed at the center by applying a customized bolus to the phantom, and the measurement was performed while moving in the range of -2 cm to +2 cm in the X, Y, and Z directions from the center assuming a positional error. It was measured at intervals of 0.5 cm, the Y-axis direction was measured up to ±3 cm, and the situation in which Bolus was set-up incorrectly was also measured. The measured doses were compared based on doses corrected to CT Hounsfield Unit (HU) 240 of silicon instead of the phantom's air cavity. Result: The treatment dose distribution was uniform when the customized bolus was used, and there was no significant difference between the prescribed dose and the actual measured value even when positional errors occurred. It was confirmed that the existing sheet-type bolus is difficult to compensate for irregularly shaped tumors protruding outside the body, but customized Bolus is found to be useful in delivering treatment doses uniformly.

  • PDF

Customized 3D Printed Bolus for Breast Reconstruction for Modified Radical Mastectomy (MRM)

  • Ha, Jin-Suk;Jung, Jae Hong;Kim, Min-Joo;Jeon, Mi Jin;Jang, Won Suk;Cho, Yoon Jin;Lee, Ik Jae;Kim, Jun Won;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.196-202
    • /
    • 2016
  • We aim to develop the breast bolus by using a 3D printer to minimize the air-gap, and compare it to commercial bolus used for patients undergoing reconstruction in breast cancer. The bolus-shaped region of interests (ROIs) were contoured at the surface of the intensity-modulated radiation therapy (IMRT) thorax phantom with 5 mm thickness, after which the digital imaging and communications in mdicine (DICOM)-RT structure file was acquired. The intensity-modulated radiation therapy (Tomo-IMRT) and direct mode (Tomo-Direct) using the Tomotherapy were established. The 13 point doses were measured by optically stimulated luminescence (OSLD) dosimetry. The measurement data was analyzed to quantitatively evaluate the applicability of 3D bolus. The percentage change of mean measured dose between the commercial bolus and 3D-bolus was 2.3% and 0.7% for the Tomo-direct and Tomo-IMRT, respectively. For air-gap, range of the commercial bolus was from 0.8 cm to 1.5 cm at the periphery of the right breast. In contrast, the 3D-bolus have occurred the air-gap (i.e., 0 cm). The 3D-bolus for radiation therapy reduces the air-gap on irregular body surface that believed to help in accurate and precise radiation therapy due to better property of adhesion.

Radiation prosthetic stents applied to oral cancer patients during the radiation therapy: case reports (효율적 방사선요법을 위한 구강 방사선스텐트의 적용: 증례보고)

  • Nam, Ki Young
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.4
    • /
    • pp.282-288
    • /
    • 2020
  • Radiation prosthetic stent is defined as the customized oral devices which serve for an efficient administration of radiation dose to the affected areas or a minimizing the unnecessary irradiation to surrounding normal tissues during maxillofacial cancer radiotherapy. Since the use of stents is individualized, a close collaboration among radiotherapist, surgeon and prosthodontist is essential thereby which helps in limiting the post-therapy morbidity as well as the stable oral rehabilitation. In this report, two customized stents (bolus carrier and tongue depressing) were fabricated and applied to patient undergone irradiation for soft palate and tongue carcinoma selectively. Multidisciplinary approach can be a proper strategy and recommended for control the sequel of post-irradiation.

Efficacy and Accuracy of Patient Specific Customize Bolus Using a 3-Dimensional Printer for Electron Beam Therapy (전자선 빔 치료 시 삼차원프린터를 이용하여 제작한 환자맞춤형 볼루스의 유용성 및 선량 정확도 평가)

  • Choi, Woo Keun;Chun, Jun Chul;Ju, Sang Gyu;Min, Byung Jun;Park, Su Yeon;Nam, Hee Rim;Hong, Chae-Seon;Kim, MinKyu;Koo, Bum Yong;Lim, Do Hoon
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.64-71
    • /
    • 2016
  • We develop a manufacture procedure for the production of a patient specific customized bolus (PSCB) using a 3D printer (3DP). The dosimetric accuracy of the 3D-PSCB is evaluated for electron beam therapy. In order to cover the required planning target volume (PTV), we select the proper electron beam energy and the field size through initial dose calculation using a treatment planning system. The PSCB is delineated based on the initial dose distribution. The dose calculation is repeated after applying the PSCB. We iteratively fine-tune the PSCB shape until the plan quality is sufficient to meet the required clinical criteria. Then the contour data of the PSCB is transferred to an in-house conversion software through the DICOMRT protocol. This contour data is converted into the 3DP data format, STereoLithography data format and then printed using a 3DP. Two virtual patients, having concave and convex shapes, were generated with a virtual PTV and an organ at risk (OAR). Then, two corresponding electron treatment plans with and without a PSCB were generated to evaluate the dosimetric effect of the PSCB. The dosimetric characteristics and dose volume histograms for the PTV and OAR are compared in both plans. Film dosimetry is performed to verify the dosimetric accuracy of the 3D-PSCB. The calculated planar dose distribution is compared to that measured using film dosimetry taken from the beam central axis. We compare the percent depth dose curve and gamma analysis (the dose difference is 3%, and the distance to agreement is 3 mm) results. No significant difference in the PTV dose is observed in the plan with the PSCB compared to that without the PSCB. The maximum, minimum, and mean doses of the OAR in the plan with the PSCB were significantly reduced by 9.7%, 36.6%, and 28.3%, respectively, compared to those in the plan without the PSCB. By applying the PSCB, the OAR volumes receiving 90% and 80% of the prescribed dose were reduced from $14.40cm^3$ to $0.1cm^3$ and from $42.6cm^3$ to $3.7cm^3$, respectively, in comparison to that without using the PSCB. The gamma pass rates of the concave and convex plans were 95% and 98%, respectively. A new procedure of the fabrication of a PSCB is developed using a 3DP. We confirm the usefulness and dosimetric accuracy of the 3D-PSCB for the clinical use. Thus, rapidly advancing 3DP technology is able to ease and expand clinical implementation of the PSCB.

Evaluation of the Usefulness of Patient Customized Shielding Block Made with 3D Printer in the Skin Cancer Electron Beam Therapy (전자선치료 시 3D 프린터로 제작한 환자 맞춤형 차폐체의 유용성 평가)

  • Ahn, Ki-Song;Jung, Woo-Chan;Kim, Dae-Hyun;Kim, Moo-Sub;Yoon, Do-Kun;Shim, Jae-Goo;Suh, Tae-Suk
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.447-454
    • /
    • 2019
  • In order to improve and supplement the shielding method for electron beam treatment, we designed a patient-specific shielding method using a 3D printer, and evaluated the usefulness by comparing and analyzing the distribution of electron beam doses to adjacent organs. In order to treat 5 cm sized superficial tumors around the lens, a CT Simulator was used to scan the Alderson Rando phantom and the DICOM file was converted into an STL file. The converted STL file was used to design a patient-specific shield and mold that matched the body surface contour of the treatment site. The thickness of the shield was 1 cm and 1.5 cm, and the mold was printed using a 3D printer, and the patient customized shielding block (PCSB) was fabricated with a cerrobend alloy with a thickness of 1 cm and 1.5 cm. The dosimetry was performed by attaching an EBT3 film on the surface of the Alderson Rando phantom eyelid and measuring the dose of 6, 9, and 12 MeV electron beams on the film using four shielding methods. Shielding rates were 83.89%, 87.14%, 87.39% at 6, 9, and 12 MeV without shielding, 1 cm (92.04%, 87.48%, 86.49%), 1.5 cm (91.13%, 91.88% with PSCB), 92.66%) The shielding rate was measured as 1 cm (90.7%, 92.23%, 88.08%) and 1.5 cm (88.31%, 90.66%, 91.81%) when the shielding block and the patient-specific shield were used together. PCSB fabrication improves shielding efficiency over conventional shielding methods. Therefore, PSCB may be useful for clinical application.

Evaluation of compensator to reduce thermal sensation in oncological hyperthermia (고주파 온열암 치료 시 열감감소를 위해 자체 제작한 보상체의 유효성 평가)

  • Lee, Yeong Cheol;Kim, Sun Myung;Jeong, Deok Yang;Kim, Young Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.27-32
    • /
    • 2017
  • Objectives: Oncological hyperthermia is a treatment to selectively kill cancer cells by directly applying heat to cancer cells or indirectly demage cancer cells. One of the most side effects of treatment is burn that can appear on the skin. In areas with irregularities such as the umbilicus, the patient feels a sense of hot and treatment may be discontinued. Therefore, in order to eliminate the irregularities of these areas, compensators are manufactured and measured to decrease in temperature. Materials and Methods: The temperature of the four sites (umbilicus, near the umbilicus, 5 cm below the umbilicus, back) was measured five times around the umbilicus in patients who were treated at oncological hyperthermia treatment device(EHY-2000, Oncotherm Kft, Hungary). The temperature sensor (TM-100, Oncotherm Kft, Hungary) was attached to four sites and the changes were observed at 5, 15, 25, 35, and 50 minutes after treatment. Compensators of three materials were used(Vaseline, Bolus, Dental resin). The data measured five times were compared for each compensator. Results: The temperature change when the compensator was not used increase from 34.65 degrees to 42.9 degrees on average. The near umbilicus was changed from 32.20 degrees to 37.00 degrees, and the 5 cm below the umbilicus was changed from 31.90 to 34.41 degrees. When the compensator material was inserted into the umbilicus, the temperature change was measured as 5.42 degrees for bolus, 6.55 degrees for vaseline, and 6.83 degrees for resin. Conclusion: Using the compensator in the region where the irregularities such as the umbilicus, the heat sensation could be reduced. the use of a resin that can be customized not only lowers the temperature but also significantly reduces the feeling of the patient. It will be possible to reduce the heat sensation in the treatment and to treat it in a more comfortable condition.

  • PDF