This is a study of match-making systems that considers the mutual satisfaction of matching partners. Recently, recommendation systems have been applied to people recommendation, such as recommending new friends, employees, or dating partners. One of the prominent domain areas is match-making systems that recommend suitable dating partners to customers. A match-making system, however, is different from a product recommender system. First, a match-making system needs to satisfy the recommended partners as well as the customer, whereas a product recommender system only needs to satisfy the customer. Second, match-making systems need to include as many participants in a matching pool as possible for their recommendation results, even with unpopular customers. In other words, recommendations should not be focused only on a limited number of popular people; unpopular people should also be listed on someone else's matching results. In product recommender systems, it is acceptable to recommend the same popular items to many customers, since these items can easily be additionally supplied. However, in match-making systems, there are only a few popular people, and they may become overburdened with too many recommendations. Also, a successful match could cause a customer to drop out of the matching pool. Thus, match-making systems should provide recommendation services equally to all customers without favoring popular customers. The suggested match-making system, called Mutually Beneficial Matching (MBM), considers the reciprocal satisfaction of both the customer and the matched partner and also considers the number of customers who are excluded in the matching. A brief outline of the MBM method is as follows: First, it collects a customer's profile information, his/her preferable dating partner's profile information and the weights that he/she considers important when selecting dating partners. Then, it calculates the preference score of a customer to certain potential dating partners on the basis of the difference between them. The preference score of a certain partner to a customer is also calculated in this way. After that, the mutual preference score is produced by the two preference values calculated in the previous step using the proposed formula in this study. The proposed formula reflects the symmetry of preferences as well as their quantities. Finally, the MBM method recommends the top N partners having high mutual preference scores to a customer. The prototype of the suggested MBM system is implemented by JAVA and applied to an artificial dataset that is based on real survey results from major match-making companies in Korea. The results of the MBM method are compared with those of the other two conventional methods: Preference-Based Matching (PBM), which only considers a customer's preferences, and Arithmetic Mean-Based Matching (AMM), which considers the preferences of both the customer and the partner (although it does not reflect their symmetry in the matching results). We perform the comparisons in terms of criteria such as average preference of the matching partners, average symmetry, and the number of people who are excluded from the matching results by changing the number of recommendations to 5, 10, 15, 20, and 25. The results show that in many cases, the suggested MBM method produces average preferences and symmetries that are significantly higher than those of the PBM and AMM methods. Moreover, in every case, MBM produces a smaller pool of excluded people than those of the PBM method.