• Title/Summary/Keyword: Curved Surface Object

Search Result 26, Processing Time 0.025 seconds

Development of a Precision Distance Sensor by Using One-dimensional CCD

  • Jang, Se-Jung;Boo, Kwang-Suck;Lim, Sung-Hyun;Lee, Seung-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.118.2-118
    • /
    • 2001
  • This research describes a development of laser distance sensor with precise resolution even in the case that the object surface has some curvature. There are typical two methods in measuring the distance by using laser light source, so called time of flight and optic-triangular methods. Both methods have an advantage and a disadvantage each other. In general, the time of flight method produces wide range of the measurement, but low accuracy. The other method is vice versa. In this research, the optic-triangular methods with one-dimensional CCD cell are proposed to obtain the precise distance measure from the sensor the surface of the curved object ...

  • PDF

A Study on the Avidance of Tool Interference in Free form Surface Machining (3차원 자유곡면 가공에 있어서의 공구간섭방지에 관한 연구)

  • 양균의;박윤섭;이희관
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1832-1843
    • /
    • 1995
  • Tool interference is one of the most critical problems in sculptured surface machining. When machining cavities and concaves, the tool frequently overcuts the portions of the surface, which cause inaccuracy in machining. So tool interference-free paths must be generated for rough cutting more efficiently. In this paper a software using SSI(Surface/Surface intersection) algorithm is developed for eliminating tool interference which occurs in an offset surface in 3-dimensional free form surface modeling. this work consists of two stages : using the offset data, the intersection curves are rapidly checked by this algorithm at the first stage. CL(cutter location) data are obtained by deleting the loop section of intersected offset patches at the second stage. This algorithm can reduce the amount of memory required to store machining data and also easily check region which have the possibility of intersection. Also, This software is verified to be useful in machining a curved object on a DNC milling machine.

Numerical determination of wind forces acting on structural elements in the shape of a curved pipe

  • Padewska-Jurczak, Agnieszka;Szczepaniak, Piotr;Bulinski, Zbigniew
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • This paper reports the study on development and verification of numerical models and analyzes of flow at high speed around structural elements in the shape of a curved pipe (e.g., a fragment of a water slide). Possibility of engineering estimation of wind forces acting on an object in the shape of a helix is presented, using relationships concerning toroidal and cylindrical elements. Determination of useful engineering parameters (such as aerodynamic forces, pressure distribution, and air velocity field) is presented, impossible to obtain from the existing standard EN 1991-1-4 (the so-called wind standard). For this purpose, flow at high speed around a torus and helix, arranged both near planar surface and high above it, was analyzed. Analyzes begin with the flow around a cylinder. This is the simplest object with a circular cross-section and at the same time the most studied in the literature. Based on this model, more complex models are analyzed: first in the shape of half of a torus, next in the shape of a helix.

Object Detection and Post-processing of LNGC CCS Scaffolding System using 3D Point Cloud Based on Deep Learning (딥러닝 기반 LNGC 화물창 스캐닝 점군 데이터의 비계 시스템 객체 탐지 및 후처리)

  • Lee, Dong-Kun;Ji, Seung-Hwan;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.303-313
    • /
    • 2021
  • Recently, quality control of the Liquefied Natural Gas Carrier (LNGC) cargo hold and block-erection interference areas using 3D scanners have been performed, focusing on large shipyards and the international association of classification societies. In this study, as a part of the research on LNGC cargo hold quality management advancement, a study on deep-learning-based scaffolding system 3D point cloud object detection and post-processing were conducted using a LNGC cargo hold 3D point cloud. The scaffolding system point cloud object detection is based on the PointNet deep learning architecture that detects objects using point clouds, achieving 70% prediction accuracy. In addition, the possibility of improving the accuracy of object detection through parameter adjustment is confirmed, and the standard of Intersection over Union (IoU), an index for determining whether the object is the same, is achieved. To avoid the manual post-processing work, the object detection architecture allows automatic task performance and can achieve stable prediction accuracy through supplementation and improvement of learning data. In the future, an improved study will be conducted on not only the flat surface of the LNGC cargo hold but also complex systems such as curved surfaces, and the results are expected to be applicable in process progress automation rate monitoring and ship quality control.

A Representation of the Nonlinear Axis in the G. C (G. C에 있어서 비선형축의 표현)

  • 조동욱;최병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.4
    • /
    • pp.309-321
    • /
    • 1988
  • This paper proposes on the algorithm of axis equation & radius function for the G.C representation which describes the curved objects with circular cross section. Object combined with linear and nonlinear parts is detached by clustering from depth data & axis points is extracted by normal vecter of the surface mask patches. In ths case of nonlinear axis point, axis equation is described by Hermite curve & the effectiveness of this paper is demonstrated by serveral experiments.

  • PDF

Shape design of conformal array using the beam pattern synthesis (빔 패턴 성능 분석을 이용한 곡면 배열 형상 설계)

  • Lee, Keunhwa;Shin, Donghoon;Lim, Jun-Seok;Hong, Wooyoung;Ha, Younghoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.347-358
    • /
    • 2021
  • The objective of this study is to optimize the shape of doubly curved surface where a conformal array is equipped. That surface is modeled with a double-ellipsoid solid controlled by four parameters. By analyzing the performance of the conformal array beams with the beam pattern synthesis, two design parameters are determined. Then, we define the weighted object function which is formulated as the sum of sharp indexes for directivity index, the elevation resolution, and the bearing resolution. The direct calculation on all grids is used to evaluate the weighted object function and seek the optimal value of two design parameters when the weightings are given. In the simulation, four kinds of weighting cases are respectively applied to evaluate the weighted object function. The optimal shapes of double-ellipsoid solid are shown in each case. Especially, when the uniform weightings are used, the double-ellipsoid solid with more smooth surface is obtained.

Automatic conversion of design drawing for CAD/CAM integration (CAD/CAM 통합을 위한 설계도면의 자동변환)

  • 김호룡;김양경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.466-472
    • /
    • 1988
  • An algorithm and its computer program were developed for the computer aided automatic conversion from 2-D design drawing, which includes arbitrary curves, to a 3-D object, and the 3-D object obtained from the developed program was used to generate the tool path of NC milling machine. The algorithm and its computer program developed were applied to several real objects for their feasibility check and showed satisfactory results. Therefore, it was proved that the algorithm and its program developed can be applied to the CAM for the mechanical parts having arbitraily curved shapes by automatically generating its 3-D object. As a result of this study a basic theory for the integration of CAD/CAM was established which will prompt the improved quality and productivity.

Multi Point Press Stretch Forming System Applied to Curved Hull Plate of Aluminum Ship (알루미늄 선박의 외판 가공을 위한 인장성형 시스템 연구)

  • Bae, Chul-Nam;Hwang, Se-Yun;Lee, Jang-Hyun;Jeong, Uh-Cheul;Kim, Kwang-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.3
    • /
    • pp.188-197
    • /
    • 2012
  • Recently, aluminum ships are constructed more than ever because of the environmental pollution generated by FRP (Fiber Reinforced Plastic) ships. In particular, FRP ships have been replaced by the Aluminum ships. The forming process of the curved aluminum plate has been performed only by labor works without systematic technique. Therefore, it is difficult to construct the aluminum ship that the design satisfies both required propulsion performance and hull design. Present study introduces a MPSF (Multi Point Stretching Forming) that is a flexible manufacturing technique to form large sheet panels of doubly curvature. The hull pieces are stretch-formed over the MPSD (multi-point stretching die) generated by the punch element matrix. In this study, MPSF is applied to deform the doubly curved surfaces of aluminum ship. The forming system including FEA (finite element analysis) of the processes for stretching the plate were carried out by static implicit analysis is suggested. Residual deformation of the surface is modeled by an elasto-plastic contact phenomena while the forming process is simulated by FEA. Finally, the proposed system is also validated, comparing the deformed shape by MPSF with that of object surfaces.

Development of Tactile Sensor for Detecting Contact Force and Slip (접촉력 및 미끄러짐을 감지 가능한 촉각 센서의 개발)

  • Choi Byung-June;Kang Sung-Chul;Choi Hyouk-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.364-372
    • /
    • 2006
  • In this paper, we present a finger tip tactile sensor which can detect contact normal force as well as slip. The sensor is made up of two different materials, such as polyvinylidene fluoride (PVDF) known as piezoelectric polymer, and pressure variable resistor ink. In order to detect slip on the surface of the object, two PVDF strips are arranged along the normal direction in the robot finger tip and the thumb tip. The surface electrode of the PVDF strip is fabricated using silk-screening technique with silver paste. Also a thin flexible force sensor is fabricated in the form of a matrix using pressure variable resistor ink in order to sense the static force. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In addition, a tactile sensing system is developed, which includes miniaturized charge amplifier to amplify the small signal from the sensor, and the fast signal processing unit. The sensor system is evaluated experimentally and its effectiveness is validated.

Development of Fingertip Tactile Sensor for Detecting Normal Force and Slip

  • Choi, Byung-June;Kang, Sung-Chul;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1808-1813
    • /
    • 2005
  • In this paper, we present the finger tip tactile sensor which can detect contact normal force as well as slip. The developed sensor is made of two different materials, such as polyvinylidene fluoride(PVDF) that is known as piezoelectric polymer and pressure variable resistor ink. In order to detect slip to surface of object, a PVDF strip is arranged along the normal direction in the robot finger tip and the thumb tip. The surface electrode of the PVDF strip is fabricated using silk-screening technique with silver paste. Also a thin flexible force sensor is fabricated in the form of a matrix using pressure variable resistor ink in order to sense the static force. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In addition, we developed a tactile sensing system by miniaturizing the charge amplifier, in order to amplify the small signal from the sensor, and the fast signal processing unit. The sensor system is evaluated experimentally and its effectiveness is validated.

  • PDF