• Title/Summary/Keyword: Curved Steel Structure

Search Result 41, Processing Time 0.036 seconds

A Temperature Predicting Method for Thermal Behaviour Analysis of Curved Steel Box Girder Bridges (곡선 강박스거더교의 온도거동 분석을 위한 온도분포 예측기법에 관한 연구)

  • Cho, Kwang-Il;Won, Jeong-Hun;Kim, Sang-Hyo;Lu, Yung-Chien
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.105-113
    • /
    • 2008
  • Solar radiation induces non-uniform temperature distribution in the bridge structure depending on the shape of the structure and shadows cast on it. Especially in the case of curved steel box girder bridges, non-uniform temperature distribution caused by solar radiation may lead to unusual load effects enough to damage the support or even topple the whole curved bridge structure if not designed properly. At present, it is very difficult to design bridges in relation to solar radiation because it is not known exactly how varying temperature distribution affects bridges; at least not specific enough for adoption in design. Standard regulations related to this matter are likewise not complete. In this study, the thermal behavior of curved steel box girder bridges is analyzed while taking the solar radiation effect into consideration. For the analysis, a method of predicting the 3-dimensional temperature distribution of curved bridges was developed. It uses a theoretical solar radiation energy equation together with a commercial FEM program. The behavior of the curved steel box girder bridges was examined using the developed method, while taking into consideration the diverse range of bridge azimuth angles and radii. This study also provides reference data for the thermal design of curved steel box girder bridges under solar radiation, which can be used to develop design guidelines.

A Study on the Safety Assessment of Curved Hollow RC Slab Bridge Structures (곡선형 RC 중공 슬래브교의 안전성 평가 사례 연구)

  • Chai, Won-Kyu;Jo, Byung-Wan;Kim, Kwang-Il
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.96-100
    • /
    • 2006
  • In this thesis, the crack investigation, the damage investigation, the drawing check, and the structural analysis were performed on a curved hollow RC(reinforced concrete) slab bridge structure to assess the structural safety of that. From the crack investigation result, main reason of crack occurrence is guessed with travelling of the large truck. Therefore reinforcement of slab structure is necessary by using the steel plate. When structural analysis, the straight beam model, the curved beam model, and the curved plate model is used. From the results of structural analysis for curved hollow RC slab bridge, the maximum bending moment and the maximum shear force was not a difference in each models. But the vertical displacement of mid span using the curved beam model was greater than that using the other models.

Study on Temperature Load of Curved Steel Box Girder Bridges (곡선강박스거더교의 온도하중에 관한 연구)

  • Kim Sang-Hyo;Cho Kwang-Il;Hong Ju-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.20-27
    • /
    • 2005
  • Solar radiation causes non-uniform temperature distribution in the structure, depending on the shape of the structure and its shadows. Especially in cases of curved steel box girder bridges, non-uniform temperature distribution due to solar radiation can reduce bridge life and serviceability when combined with another load combination. In this study, the method for predicting the temperature distribution of curved bridges developed by Kim et al., was used to predict the non-uniform temperature distribution which served as a basis for structural analysis of 3-D bridge behavior. In order to seek the most unfavorable conditions of solar radiation, observation data from the Korea Meteorological Administration for solar radiation were analyzed. The region of the most high solar radiation condition was selected and its one year variation of the solar radiation data was considered. From this analysis, the most unfavorable solar radiation condition with lower solar altitude and intense solar radiation was selected. Based on the selected solar radiation condition, structural behavior of curved bridges with diverse bridge direction, span length, radius and support conditions are analyzed.

  • PDF

Dynamic stability and structural improvement of vibrating electrically curved composite screen subjected to spherical impactor: Finite element and analytical methods

  • Xiao, Caiyuan;Zhang, Guiju
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.533-552
    • /
    • 2022
  • The current article deals with the dynamic stability, and structural improvement of vibrating electrically curved screen on the viscoelastic substrate. By considering optimum value for radius curvature of the electrically curved screen, the structure improvement of the system occurs. For modeling the electrically system, the Maxwell's' equation is developed. Hertz contact model in employed to obtain contact forces between impactor and structure. Moreover, variational methods and nonlinear von Kármán model are used to derive boundary conditions (BCs) and nonlinear governing equations of the vibrating electrically curved screen. Galerkin and Multiple scales solution approach are coupled to solve the nonlinear set of governing equations of the vibrating electrically curved screen. Along with the analytical solution, 3D finite element simulation via ABAQUS package is provided with the aid of a FE package for simulating the current system's response. The results are categorized in 3 different sections. First, effects of geometrical and material parameters on the vibrational performance and stability of the curves panel. Second, physical properties of the impactor are taken in to account and their effect on the absorbed energy and velocity profile of the impactor are presented. Finally, effect of the radius and initial velocity on the mode shapes of the current structure is demonstrated.

Ultimate strength behavior of steel-concrete-steel sandwich beams with ultra-lightweight cement composite, Part 2: Finite element analysis

  • Yan, Jia-Bao;Liew, J.Y. Richard;Zhang, Min-Hong
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1001-1021
    • /
    • 2015
  • Ultra-lightweight cement composite (ULCC) with a compressive strength of 60 MPa and density of $1,450kg/m^3$ has been developed and used in the steel-concrete-steel (SCS) sandwich structures. This paper investigates the structural performances of SCS sandwich composite beams with ULCC as filled material. Overlapped headed shear studs were used to provide shear and tensile bond between the face plate and the lightweight core. Three-dimensional nonlinear finite element (FE) model was developed for the ultimate strength analysis of such SCS sandwich composite beams. The accuracy of the FE analysis was established by comparing the predicted results with the quasi-static tests on the SCS sandwich beams. The FE model was also applied to the nonlinear analysis on curved SCS sandwich beam and shells and the SCS sandwich beams with J-hook connectors and different concrete core including ULCC, lightweight concrete (LWC) and normal weight concrete (NWC). Validations were also carried out to check the accuracy of the FE analysis on the SCS sandwich beams with J-hook connectors and curved SCS sandwich structure. Finally, recommended FE analysis procedures were given.

Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams

  • Arefi, Mohammed;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.579-590
    • /
    • 2018
  • Size-dependent free vibration responses and magneto-electro-elastic bending results of a three layers piezomagnetic curved beam rest on Pasternak's foundation are presented in this paper. The governing equations of motion are derived based on first-order shear deformation theory and nonlocal piezo-elasticity theory. The curved beam is containing a nanocore and two piezomagnetic face-sheets. The piezomagnetic layers are imposed to applied electric and magnetic potentials and transverse uniform loadings. The analytical results are presented for simply-supported curved beam to study influence of some parameters on vibration and bending results. The important parameters are spring and shear parameters of foundation, applied electric and magnetic potentials, nonlocal parameter and radius of curvature of curved beam. It is concluded that the increase in radius of curvature tends to an increase in the stiffness of curved beam and consequently natural frequencies increase and bending results decrease. In addition, it is concluded that with increase of nonlocal parameter of curved beam, the stiffness of structure is decreased that leads to decrease of natural frequency and increase of bending results.

A Case Study of Retraction Controlled Wind Velocity on the Steel Retractable Roof of Large Span (강성개폐식 대공간 지붕의 개폐 관리풍속 사례 분석)

  • Song, Jin-Young;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.93-100
    • /
    • 2018
  • The retractable roof structures have actions of various types of loads and external forces depending on the retraction and operation conditions of the roof in terms of efficiency of control and maintenance as the aspect of structural plan. In particular, there is a need for studies on the establishment of retraction controlled wind velocity to maintain the stable control and usability of roof structure against strong winds or sudden gusts during the retraction of the roof. In this paper, it was intended to provide basic materials for the development of guidelines on the operation and maintenance of domestic retractable buildings with large space by analyzing the factors affecting the retraction controlled wind velocity for the overseas stadiums with the large spatial retractable roof structures where the sliding system was applied on the steel retractable systems. As a result, the controlled wind velocity tends to decrease as the retractable roof area increases. On the other hand, the controlled wind velocity tends to increase as the retraction time increases. In addition, in the space-grid roof structures, the spherical roof structures type showed the average controlled wind velocity of 10m/sec lower than that of 17.3m/sec for curved-roof structure type, and in the curved-roof structure type, the truss roof structure showed the average controlled wind velocity of 8.9m/sec which is lower than that of 17.3m/sec for the space for the space-grid roof structure.

Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-of-plane motion

  • Allahkarami, Farshid;Nikkhah-bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.673-691
    • /
    • 2018
  • The main goal of this research is to examine the in-plane and out-of-plane forced vibration of a curved nanocomposite microbeam. The in-plane and out-of-plane displacements of the structure are considered based on the first order shear deformation theory (FSDT). The curved microbeam is reinforced by functionally graded carbon nanotubes (FG-CNTs) and thus the extended rule of mixture is employed to estimate the effective material properties of the structure. Also, the small scale effect is captured using the strain gradient theory. The structure is rested on a nonlinear orthotropic viscoelastic foundation and is subjected to concentrated transverse harmonic external force, thermal and magnetic loads. The derivation of the governing equations is performed using energy method and Hamilton's principle. Differential quadrature (DQ) method along with integral quadrature (IQ) and Newmark methods are employed to solve the problem. The effect of various parameters such as volume fraction and distribution type of CNTs, boundary conditions, elastic foundation, temperature changes, material length scale parameters, magnetic field, central angle and width to thickness ratio are studied on the frequency and force responses of the structure. The results indicate that the highest frequency and lowest vibration amplitude belongs to FGX distribution type while the inverse condition is observed for FGO distribution type. In addition, the hardening-type response of the structure with FGX distribution type is more intense with respect to the other distribution types.

Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM

  • Allahkarami, Farshid;Nikkhah-Bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.141-155
    • /
    • 2017
  • This paper presents an investigation into the magneto-thermo-mechanical vibration and damping of a viscoelastic functionally graded-carbon nanotubes (FG-CNTs)-reinforced curved microbeam based on Timoshenko beam and strain gradient theories. The structure is surrounded by a viscoelastic medium which is simulated with spring, damper and shear elements. The effective temperature-dependent material properties of the CNTs-reinforced composite beam are obtained using the extended rule of mixture. The structure is assumed to be subjected to a longitudinal magnetic field. The governing equations of motion are derived using Hamilton's principle and solved by employing differential quadrature method (DQM). The effect of various parameter like volume percent and distribution type of CNTs, temperature change, magnetic field, boundary conditions, material length scale parameter, central angle, viscoelastic medium and structural damping on the vibration and damping behaviors of the nanocomposite curved microbeam is examined. The results show that with increasing volume percent of CNTs and considering magnetic field, material length scale parameter and viscoelastic medium, the frequency of the system increases and critically damped situation occurs at higher values of damper constant. In addition, the structure with FGX distribution type of CNTs has the highest stiffness. It is also observed that increasing temperature, structural damping and central angle of curved microbeam decreases the frequency of the system.