• Title/Summary/Keyword: Curved I-girder

Search Result 22, Processing Time 0.024 seconds

Interaction of Flexure-Torsional by eccentric load in horizontal curved 'I' shape girder (편심하중이 작용하는 수평 곡선 I 형 거더의 휨·비틀림 상호작용)

  • Lim, Jeong-Hyeon;Lee, Kee-Sei;Kim, Hee-Soo;Choi, Jun-Ho;Kang, Young-Joung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6385-6390
    • /
    • 2015
  • With bending moment, torsional moment due to geometric properties as "Initial curvature" acts in horizontally curved I-girder. These behavior causes the secondary effect of bending in minor-axis because of interaction between bending and torsion. The bending and torsion interaction cause a loss of load bearing capacity by induced the early inelastic or plasticity condition in curved girder. Also eccentric load by movements of traffic can increase torsion. However, Equation of interaction between bending and torsion for straight girder, not deal with characteristics of curved girder behavior in previous studies, can be overestimated for ultimate strength in horizontally curved I-girder acting vertical force. Therefore, using more rational, obvious suggestion is required when design curved girder. In this study, we identified the bending-torsional moment interaction for the horizontally curved I-girder of the eccentric load acting by FEM analysis.

Behavior of Horizontally Curved I-Girder Bridges under Seismic Loading (지진하중하에서의 수평곡선I형교의 거동특성)

  • Yoon, Ki Yong;Sung, Ik Hyun;Choi, Jin Yu;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.793-802
    • /
    • 2002
  • This study presented a finite element formulation for the dynamic analysis of horizontally curved I-girder bridges. The stiffness and mass matrices of the curved and the straight beam elements are formulated. Each node of both elements has seven degrees of freedom, including the warping degree of freedom. The curved beam element is derived from Kang and Yoo's theory of thin-walled curved beams. The computer program EQCVB has been developed to perform dynamic analyses of various horizontally curved I-girder bridges. The Gupta method is used to solve the eigenvalue problem efficiently, while the Wilson-${\theta}$ method is used for the seismic analysis. The efficiency of EQCVB is demonstrated by comparing solution time with ABAQUS. Using EQCVB, the study is applied to investigate the dynamic behavior of horizontally curved I-girder bridges under seismic loading.

Parameters influencing seismic response of horizontally curved, steel, I-girder bridges

  • Linzell, Daniel G.;Nadakuditi, Venkata P.
    • Steel and Composite Structures
    • /
    • v.11 no.1
    • /
    • pp.21-38
    • /
    • 2011
  • This study examines the influence of curved, steel, I-girder bridge configuration on girder end reactions and cross frame member forces during seismic events. Simply-supported bridge finite element models were created and examined under seismic events mimicking what could be experienced in AASHTO Seismic Zone 2. Bridges were analyzed using practical ranges of: radius of curvature; girder and cross frame spacings; and lateral bracing configuration. Results from the study indicated that: (1) radius of curvature had the greatest influence on seismic response; (2) interior (lowest radius) girder reactions were heavily influenced by parameter variations and, in certain instances, uplift at their bearings could be a concern; (3) vertical excitation more heavily influenced bearing and cross frame seismic response; and (4) lateral bracing helped reduce seismic effects but using bracing along the entire span did not provide additional benefit over placing bracing only in bays adjacent to the supports.

A Comparative Study on Influence Line of Curved I-Girder Grid Bridge with Constant Cross Section and Variable Cross Section (등·변단면 I-형 곡선격자형교의 영향선에 관한 비교연구)

  • Chang, Byung Soon;Seo, Sang Geun;Ryoo, Eun Yeol;Yun, Jeung Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.615-627
    • /
    • 1998
  • In order to determine the maximum shear force, the maximum bending moment, the maximum pure torsion. the maximum warping torsion, and the maximum bimoment for the curved girder grid bridges, it is important to find the location of live load applied to the curved girder grid bridges, so that the influence line can be estimated. The fundamental differential equation concerning the behaviour with warping effects for the curved girder is developed by Vlasov. In this paper, the influence line of shear force, bending moment, pure torsion, warping torsion, and bimoment due to unit vertical load and unit torsional moment for curved I-girder grid bridges with variable and constant cross section are obtained by using the finite difference method and compared with respectively.

  • PDF

A Study on Influence Line of Curved I-Girder Grid Bridge with Constant Cross Section (등단면 I-형 곡선 격자형교의 영향선에 관한 연구)

  • Chang, Byung Soon;Ryoo, Eun Yeol;Joo, Jae Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.501-513
    • /
    • 1997
  • The general behavior of curved girder including the warping effects is formulated by series of differential equations postulated by Vlasov. In order to determine the maximum shear force, the maximum bending moment, the maximum pure torsion, the maximum warping torsion, and the maximum bimoment for the curved girder grid bridges, it is important to find the location of live load applied to the curved girder grid bridges, so that the influence line can be estimated. In this paper, the influence line of shear force, bending moment, pure torsion, warping torsion, and bimoment due to unit vertical load and unit torsional moment for curved I-girder grid bridges are obtained by using the finite difference method.

  • PDF

Free Vibration Analysis of Horizontally Curved I-Girder Bridges using the Finite Element Method (유한요소법을 이용한 수평곡선 I형교의 자유진동해석)

  • Yoon, Ki Yong;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.47-61
    • /
    • 1998
  • The behavior of horizontally curved I-girder bridges is complex because the flexural and torsional behavior of curved girders are coupled due to their initial curvature. Also, the behavior is affected by cross beams. To investigate the behavior of horizontally curved I-girder bridges, it is necessary to consider curved girders with cross beams. In order to perform free vibration analyses of horizontally curved I-girder bridges, a finite element formulation is presented here and a finite element analysis program is developed. The formulation that is presented here consists of curved and straight beam elements, including the warping degree of freedom. Based on the theory of thin-walled curved beams, the shape functions of the curved beam elements are derived from homogeneous solutions of the static equilibrium equations. Third-order hermits polynomials are used to form the shape functions of the straight beam elements. In the finite element analysis program, global stiffness and mass matrix are composed, based on the Cartesian coordinate system. The Gupta method is used to efficiently solve the eigenvalue problem. Comparing the results of several examples here with those of previous studies, the formulation presented is verified. The validity of the program developed is shown by comparing results with those analyzed by the shell element.

  • PDF

An Analytical Study of Flange Local Buckling of Horizontally Curved I-Girders for Estimate Resonable Stress Gradient (합리적 응력경도 산정을 위한 수평 곡선 I-형 거더의 플랜지 국부좌굴의 해석적 연구)

  • Kim, Hee-Soo;Lee, Kee-Sei;Lee, Jeong-Hwa;Choi, Jun-Ho;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6504-6510
    • /
    • 2015
  • Horizontally curved I-girders are subjected to not only bending moments but also torsional moments. The torsional moment of the plate girder is addition of St. Venant torsion and non-uniform torsion. In the flange of I-shaped plate girder, a kind of open-section, the normal stresses is not distributed uniformly due to the non-uniform torsion. Because of that, one of compression flange tip can be yielded faster than the flange of general straight girder. In other words, the flange local buckling strength is decreased when the girder has initial curvature. In this paper, the numerical analysis is conducted to investigate the average stresses in flange for curved girders. The subtended angle and slenderness ratio are taken as parameters.

A curved shell finite element for the geometrically non-linear analysis of box-girder beams curved in plan

  • Calik-Karakose, Ulku H.;Orakdogen, Engin;Saygun, Ahmet I.;Askes, Harm
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.221-238
    • /
    • 2014
  • A four-noded curved shell finite element for the geometrically non-linear analysis of beams curved in plan is introduced. The structure is conceived as a sequence of macro-elements (ME) having the form of transversal segments of identical topology where each slice is formed using a number of the curved shell elements which have 7 degrees of freedom (DOF) per node. A curved box-girder beam example is modelled using various meshes and linear analysis results are compared to the solutions of a well-known computer program SAP2000. Linear and non-linear analyses of the beam under increasing uniformly distributed loads are also carried out. In addition to box-girder beams, the proposed element can also be used in modelling open-section beams with curved or straight axes and circular plates under radial compression. Buckling loads of a circular plate example are obtained for coarse and successively refined meshes and results are compared with each other. The advantage of this element is that curved systems can be realistically modelled and satisfactory results can be obtained even by using coarse meshes.

Seismic Fragility Analysis of Curved Bridge under High Frequency Earthquakes (고주파 지진에 의한 곡선 교량의 지진 취약도 분석)

  • Jeon, Juntai;Ju, Bu-Seog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.806-812
    • /
    • 2020
  • Purpose: This is aimed to evaluate the seismic fragility of curved bridge structure with I-shape girder subjected to 12 high frequency ground motions based on Gyeongju earthquake. Method: The linear elastic finite element model of curved bridge with I-Shape cross section was constructed and them linear elastic time history analyses were performed using the 12 artificial ground motions. Result: It was found that displacement response(LS1, LS2) was failed after PGA 0.1g and the stress response also showed failure after PGA 0.2g. Conclusion: The curved bridge with I-shape girder was sensitive to high frequency earthquakes.

Seismic Fragility Analysis of Curved Bridge Structure by Girder Section Shape (거더 단면형상 변화에 따른 곡선교량의 지진 취약도 분석)

  • Jeon, Juntai;Ju, Buseog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.626-633
    • /
    • 2019
  • Purpose: The primery objecting of this paper is to explore the seismics fragility of curved bridge based on the change of girder section. Method: The cross section of the bridge structure was constructed with I, T, and Box shapes and then, in order to perform the seismic fragility 24 seismic ground motions were used, including Gyeongju Pohang Earthquake. Result: Fist, T-Shape of the bridge strucrue was much fragility in terms of the stress on girder section, in comparison to the other shapes. The seismic fragilies of the structures with respect to displacement(drift ratio), however, were shown simialr. Conclusion: In other to wvaluation the seismic fragility of curved structure using different girder shapes, analytical models of the structure were constructed and then, the probability failure of box-shape girder was shown lower probability. In further, Parametric studies of curved structures must be conducted.