• 제목/요약/키워드: Curved Duct

검색결과 91건 처리시간 0.024초

LDV에 의한 곡관 후류에 연결된 직관에서 난류맥동유동의 유동특성 (Flow Characteristics of a Turbulent Pulsating Flow in a Straight Duct Connected to a Curved Duct by using an LDV)

  • 손현철;이행남;박길문
    • 설비공학논문집
    • /
    • 제15권3호
    • /
    • pp.177-186
    • /
    • 2003
  • In the present study, the flow characteristics of developing turbulent flows are investigated at the exit region of a square cross-sectional 180" curved duct with dimensions of 40mm$\times$40mm$\times$4000mm (height $\times$ width $\times$length). Smoke particles produced from mosquito coils were used as seed particles for the LDV measurement. Experiments were carried out to measure axial velocity profiles, shear stress distributions and entrance lengths by using an LDV system and Rotating Machinery Resolver RMR with PHASE software. Experimental results clearly show that the time-averaged Reynolds number does not affect oscillatory flow characteristics because the turbulent components tend to balance the oscillatory components in the fully developed flow region. Also, the velocity profiles are in good agreement with 1/7power law such as the results of steady turbulent flows. The turbulent intensity linearly increases along the walls and is slightly higher, especially in the period of deceleration. On the other hand, the LDV measurements show that shear stress values in slightly higher in the period of deceleration due to the flow characteristics in the exit region. The entrance length where flows become stable appears at the point that is 40 times the length of hydraulic diameter.eter.

직사각형단면을 갖는 $180^{\circ}$곡관에서의 강제 대류 열전달 특성에 관한 실험적 연구 (An Experimental Study on Forced Convective Heat Transfer in a Rectangular Duct with $180^{\circ}$ Bend)

  • 문찬;이건휘;최영돈
    • 대한기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.290-301
    • /
    • 1992
  • An experimental study has been performed to investigate the characteristics of forced convective heat transfer in a rectangular duct with a 180.deg. bend. The Nusselt number of outer wall has maximum value near 105.deg. at which secondary flow is most active and the Nusselt number of inner wall has maximum value near the inlet of a duct. Near the outlet of a duct, the Nusselt number of outer wall decreases, the Nusselt number of inner wall increases and so those access each other through the influence of a straight duct attached to the end of a duct with a 180.deg. bend. Results of this experimental study would be the fundamental data when streamline curvature correction models are developed in the numerical study for forced convective heat transfer in a curved duct.

LDV에 의한 곡관덕트에서 난류맥동유동의 유동특성에 관한 실험적 연구 (An Experimental Study on Flow Characteristics of Turbulent Pulsating Flow in a Curved Duct by using LDV)

  • 이홍구;손현철;이행남;박길문
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.397-403
    • /
    • 2000
  • In the present study, flow characteristics of turbulent pulsating flow in a square-sectional $180^{\circ}$ curved duct were experimentally investigated. Experimental studies for air flows were conducted to measure axial velocity and wall shear stress distributions and entrance length in a square-sectional $180^{\circ}$ curved duct by using the LDV with the data acquisition and the processing system. The experiment was conducted in seven sections from the inlet (${\phi}=0^{\circ}$) to the outlet (${\phi}=180^{\circ}$) at $30^{\circ}$ intervals of the duct. The results obtained from the experimentation were summarized as follows ; (1) When the ratio of velocity amplitude ($A_1$) was less than one, there was hardly any velocity change in the section except near the wall and any change in axial velocity distributions along the phase. When the ratio of velocity amplitude ($A_1$) was 0.6, the change rate of velocity was slow. (2) Wall shear stress distributions of turbulent pulsating flow were similar to those of turbulent steady flow. The value of the wall shear stress became minimum in the inner wall aid gradually increased toward the outer wall where it became maximum. (3) The entrance length of turbulent pulsating flow reached near the region of bend angle of $90^{\circ}$, like that of turbulent steady flow. The entrance length was changed by the dimensionless angular frequency (${\omega}^+$).

  • PDF

Al2O3 나노입자가 젤(Gel) 추진제의 곡관 유동특성에 미치는 연구 (Flow Characteristics Investigation of Gel Propellant with Al2O3 Nano Particles in a Curved Duct Channel)

  • 오정수;문희장
    • 한국추진공학회지
    • /
    • 제17권3호
    • /
    • pp.47-55
    • /
    • 2013
  • 본 연구에서는 곡관 채널에서의 비뉴튼 젤 추진제의 유동 특성에 대해 연구하였다. 물을 기본유체로 하는 모사젤을 Carbopol 941 젤화 작용제와 NaOH 농축액을 혼합하여 제작하였으며 입자 유무에 따른 유동 특성을 파악하기 위해 $Al_2O_3$ 나노 입자가 첨가된 젤을 제작하여 두 젤 추진제간의 유변학적 특성을 비교하였다. 두 모사젤에 대해 U-자형의 곡관부 위치별 유동특성과 Dean 와류(vortices)의 경향은 상이하였으나 나노 입자가 첨가된 모사젤 추진제의 경우 높은 컨시스턴시 지수에도 불구하고 두 모사젤 모두 비슷한 범위의 임계 Dean 수를 도출하였다. 나노 입자 첨가 유무와 무관하게 power-law 지수값이 임계 Dean 수를 결정하는데 주요 변수임을 판단할 수 있었으나 나노입자가 첨가된 젤의 경우 Dean 와류 강도의 변동폭이 상대적으로 크다는 결론을 내릴 수 있었다.

터보 냉동기의 소음원 파악 및 저소음화에 대한 연구 (A Study on the identification of the noise source and noise reduction method of turbo chiller)

  • 전완호;이준근;정필중;염창훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.125-131
    • /
    • 2000
  • The turbo chiller uses centrifugal compressor, which operates at about 14500 rpm. Due to the high rpm of the impeller, the noise of chiller makes one of the serious problems. The possibility of the sound reduction by using absorbing material is studied in this paper. The generated sound propagates through the duct and then radiates to the outer field. So, the use of sound absorption material inside the duct is one of the effective methods. To study the effect of location of the material, we use Boundary Element Method to analyze the sound field inside the duct system. Numerical study shows the highest sound pressure region is near the elbow of curved duct. From the analysis, it is also shown that the elbow duct is the main radiator of noise and sound absorption treatment of this duct results noise reduction of the highest noise level at BPF and high frequency region.

  • PDF

덕트형 항온챔버에서 히트펌프 실외기의 성능평가 가능성에 대한 CFD (CFD on the possibility of performance evaluation of heat pump outdoor unit in duct-type constant temperature chamber)

  • 김종열
    • 융합신호처리학회논문지
    • /
    • 제22권3호
    • /
    • pp.116-121
    • /
    • 2021
  • 에너지를 절약하기 위해 고효율 히트펌프를 개발하기 위한 많은 연구가 이루어지고 있으며, 실외기 코일에 발생하는 서리가 발생하는 현상을 줄이거나 없애기 위한 연구도 동시에 이루어지고 있다. 계절과 관계없이 히트펌프의 실외기에 서리가 발생하지 않는 연구를 진행할 수 있도록 자연 상태와 동일한 조건에서 실험할 수 있는 곡선형 항온챔버를 구축하였다. 이러한 곡선형 항온챔버가 실험 장치로서 타당성을 갖추고 있는지 검증하기 위해 시뮬레이션을 하였다. CFD 조건은 곡선형 항온챔버 내에 위치한 실외기 앞의 직선형 덕트 길이를 덕트 관경의 1배, 5배, 10배, 15배로 하였다. 그 결과 덕트 관경의 10배 길이로 시뮬레이션했을 때 자연 상태와 가장 유사하다는 것을 알게 되었다.

경계요소법을 이용한 터보냉동기 덕트의 내부 음향장 해석 (An Analysis of Acoustic Field for Turbo Chiller Discharge Duct by Using Boundary Element Method)

  • 전완호;이준근;정필중
    • 소음진동
    • /
    • 제10권6호
    • /
    • pp.963-970
    • /
    • 2000
  • The turbo chiller uses centrifugal compressor, which operates at about 14,500 rpm. Due to the high rpm of the impeller, the noise of chiller males one of the serious problems. The possibility of the sound reduction by using absorbing material is studied in this paper. The generated sound propagates through the duct and then radiates to the outer field. So, the use of sound absorption material inside the duct is one of the effective methods. To study the effect of location of the material, we use Boundary Element Method to analyze the sound field inside the duct system. Numerical study shows the highest sound pressure region is near the elbow of curved duct. From the numerical study, it is also shown that appropriate use of sound absorbing material at this region makes 8dB reduction of the highest noise level.

  • PDF

PIV 계측에 의한 $180^{\circ}$곡관 출구에 연결된 직관에서 층류정상유동의 운동에너지 (Kinetic energy of Laminar Steady flows in the Exit Reguon Connected to the straight Square-sectionnal $180^{\circ}$ curved Duct by using PIV)

  • 이종구;이홍구;손현철;이행남;박길문
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.521-524
    • /
    • 2002
  • In the present study, kinetic energy of laminar steady flow in the exit region connected to the square-sectional $180^{\circ}$curved duct was investigated experimentally. The experimental study for air flows was conducted to measure kinetic energy distributions by using the Particle Image Velocimetry(PIV) system with the data acquisition and processing system of Cactus 2000 software. The results obtained from experimental studies are summarized as follows : (1) The critical Reynolds number for a change from laminar steady flow to transitional steadt flow was about 1910, in the 50 region of dimensionless axial position (x/Dh) whirh was considered as a fully developed flow region. (2) Maximum kinetic energy of laminar steady flow was gradually increased as the Reynolds number increased.

  • PDF

열선유속계를 이용한 $180^{\circ}$ 곡덕트 내 난류유동의 측정 (Measurements of Turbulent Flows in the $180^{\circ}$ Curved Duct by Hot-wire Anemometer)

  • 한성호;김원갑;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.729-734
    • /
    • 2003
  • This paper reports the characteristics of the three dimensional turbulent flow in the rectangular-sectioned 180 degree bends by Hot-wire anemometer. Grande and Kool proposed a cooling law for the measurements of the flow through the narrow passage. The authors noticed that the calibration coefficients of original method are not constant and fairly sensitive to the flow approaching angle. Measured voltages are converted to three velocity and six Reynolds stress components using the modified method in which the coefficients are treated as a function of approaching angle.

  • PDF

수정된 Extendel $k-\varepsilon$ 난류모델을 사용한 $90^{\circ}$곡관 내의 난류유동에 관한 수치해석적 연구 (Numerical Computations of Turbulent Flow in a $90^{\circ}$ Curved Duct Using a Modified Extended $k-\varepsilon$ Turbulence Model)

  • 정수진;김태훈;조진호
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.139-146
    • /
    • 1996
  • An extended $k-\varepsilon$ tuebulence model modified by considering the streamline curvature effect and standard $k-\varepsilon$ turbulence model have been applied for three dimensional analysis of turbulece flow in a $90^{\circ}$ curved duct. By comparision of the results with the experimental data, the modified extended $k-\varepsilon$ model gave closer agreement with experimental data than the results from standard $k-\varepsilon$ model owing to an extra time scale of the production rate and parameter describing effects of streamline curvature included in the dissipation rate equation.

  • PDF