• Title/Summary/Keyword: Curve Fitting Algorithm

Search Result 136, Processing Time 0.027 seconds

Iris Segmentation and Recognition

  • Kim, Jae-Min;Cho, Seong-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.227-230
    • /
    • 2002
  • A new iris segmentation and recognition method is described. Combining a statistical classification and elastic boundary fitting, the iris is first segmented robustly and accurately. Once the iris is segmented, one-dimensional signals are computed in the iris and decomposed into multiple frequency bands. Each decomposed signal is approximated by a piecewise linear curve connecting a small set of node points. The node points represent features of each signal. The similarity measture between two iris images is the normalized cross-correlation coefficients between simplified signals.

DESIGN OF ADAPTIVE CONTROLLER OF DC SERVO MOTOR (직류전동기의 적응 제어기 설계에 관한 연구)

  • Chang, S.G.;Won, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.25-28
    • /
    • 1987
  • Design procedure of adaptive controller with variable load condition is present and applied to velocity control of small, permanent magnet DC servo motor. The state feedback control scheme is adopted and Recursive Least Squares algorithm is used for parameter estimation. In order to reduce the time consuming. In the procedure of adaptation-gain tuning of state feedback controller, approximate curve fitting technique is applied to the relations between load condition and poles of the system, load condition and feedback gains. With this method, fast adaptation can be accomplished. It is shown that this procedure can be applied not only to variable load condition but also to variation of other system constants, for example variation of resistance and inductance etc.. Simulation results is present for both cases - variable inertia load, variable motor resistance to verify performance improvements. This design procedure produces an adaptive con troller which is feasible for implementation with microprocessor by reducing calculation time.

  • PDF

Optical Skin-fat Thickness Measurement Using Miniaturized Chip LEDs: A Preliminary Human Study

  • Ho, Dong-Su;Kim, Ee-Hwa;Hwang, In-Duk;Shin, Kun-Soo;Oh, Jung-Taek;Kim, Beop-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.304-309
    • /
    • 2009
  • We tested the feasibility of measuring fat thickness using a miniaturized chip LED sensor module, testing 12 healthy female subjects. The module consisted of a single detector and four sources at four different source-detector distances (SD). A segmental curve-fitting procedure was applied, using an empirical algorithm obtained by Monte-Carlo simulation, and fat thicknesses were estimated. These thicknesses were compared to computed-tomography (CT) results; the correlation coefficient between CT and optical measurements was 0.932 for bicep sites. The mean percentage error between the two measurements was 13.12%. We conclude that fat thickness can be efficiently measured using the simple sensor module.

Three-dimensional Shape Recovery from Image Focus Using Polynomial Regression Analysis in Optical Microscopy

  • Lee, Sung-An;Lee, Byung-Geun
    • Current Optics and Photonics
    • /
    • v.4 no.5
    • /
    • pp.411-420
    • /
    • 2020
  • Non-contact three-dimensional (3D) measuring technology is used to identify defects in miniature products, such as optics, polymers, and semiconductors. Hence, this technology has garnered significant attention in computer vision research. In this paper, we focus on shape from focus (SFF), which is an optical passive method for 3D shape recovery. In existing SFF techniques using interpolation, all datasets of the focus volume are approximated using one model. However, these methods cannot demonstrate how a predefined model fits all image points of an object. Moreover, it is not reasonable to explain various shapes of datasets using one model. Furthermore, if noise is present in the dataset, an error will be generated. Therefore, we propose an algorithm based on polynomial regression analysis to address these disadvantages. Our experimental results indicate that the proposed method is more accurate than existing methods.

Structural Dynamic System Reconstruction for Modal Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.150-150
    • /
    • 2000
  • We as modal parameter estimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of multivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre- and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios on be estimated using tile coordinates of the structural system reconstructed fro the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting.

  • PDF

Structural Dynamic System Reconstruction for Model Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.527-527
    • /
    • 2000
  • Wean modal parameter estiimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of mllltivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios can be estimated using the coordinates of the structural system reconstructed from the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting..

  • PDF

Scenario-based 3D Objects Synthesizing System Design

  • Nam, Ji-Seung;Gao, Hui;Kang, Mi-Young;Kim, Kyoung-Tae;Son, Seung-Chul;Pom, Chung-Ung;Heo, Kwon
    • Journal of Information Processing Systems
    • /
    • v.2 no.1
    • /
    • pp.18-22
    • /
    • 2006
  • This paper proposes the framework of the scenario-based 3D image synthesizing system that allows common users who envision a scenario in their mind to realize it into the segments of cool animation. We focused on utilization of the existing motions to synthesize new motions for the objects. The framework is useful to build a 3D animation in game programming with a limited set of 3D objects. We also propose a practical algorithm to reuse and expand the objects. This algorithm is based on motion path modification rules. Both linear and nonlinear curve-fitting algorithms were applied to modify an animation by key frame interpolation and to make the motion appear realistic.

A Study on Development of Arc Sensor for Arc Welding Robot Using Consumable Electrode (소모성 전극을 사용하는 아크용접 로봇을 위한 아크센서 개발에 관한 연구)

  • 이승영;문형순;나석주;장영주;안병규
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.22-33
    • /
    • 1993
  • Arc sensor is indispensable to arc welding robot systems for compensating the joint misalignment such as mismatch of the workpiece, ill-conditioned positioner and thermal deformation during welding. Furthermore, the amount of these mismatches cannot be preivously expected, and changes from time to time. There are many kinds of seam trackers for correcting the welding path of the robot, where non-contact type sensors arc prevalently used in arc welding robot systems. In this study, an arc sensor was developed for GMA and FCA welding robot system. Since the arc sensor uses the arc characteristics during welding, the operating principle of the arc sensor must be adjusted according to the welding condition. Especially in GMA welding with the $CO_{2}$ shielding gas, the welding arc is not stable because of the short circuit and non-axial globular transfer mode of the molten droplet. In this study, the 2nd order least square curve fitting algorithm was adopted and the applicability of this algorithm was investigated for robot welding systems. For easy usage of the arc sensor, the operating parameters for arc sensor were limited to eight which can be easily determined by the operator.

  • PDF

Design of Control System for All-Metal Domestic Induction Heating Considering Temperature and Quick-Response (워킹코일 온도 및 제어 속응성을 고려한 All-Metal Domestic Induction Heating 제어 시스템 설계)

  • Park, Sang-Min;Jang, Eun-Su;Joo, Dong-Myoung;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.199-207
    • /
    • 2018
  • In this paper, an all-metal domestic induction heating (IH) system that can quickly identify ferromagnetic and non-ferromagnetic pots considering temperature changes in the working coil is designed. Load modeling is performed after analyzing the parameters of the pot material and the central misalignment of the working coil. To improve the performance and stability of the all-metal IH cooking heater, a power curve-fitting model is used to design a control system that quickly responds to load parameter fluctuations. In addition, a power control algorithm is established to compensate for the reference value by reflecting the increase in working coil temperature during heating of the non-ferromagnetic pot. The validity of the proposed control algorithm for the all-metal IH is verified by experiments using a 3.2 kW all-metal IH cooking heater.

Effect of Charged Refrigerant Amount on Operating Characteristics and Development of Detecting Program for System Air-Conditioner (시스템에어컨의 냉매충전량에 따른 사이클 운전특성 및 냉매량 판독 프로그램 개발)

  • Tae, Sang-Jin;Kim, Hun-Mo;Mun, Je-Myeong;Kim, Jong-Yeop;Gwon, Hyeong-Jin;Jo, Geum-Nam
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.427-432
    • /
    • 2005
  • This study developed a program for detecting charged refrigerant amount in system air-conditioner. System air-conditioner is an air-conditioning system with multiple indoor units. Due to the complexity of the system, it is more difficult to detect the refrigerant amount charged in system air-conditioner than in a general single air-conditioner. Experiments were performed for 6 HP outdoor units with 3 indoor units in a psychrometric calorimeter. The experimental amount of charged refrigerant were ranged from 60% to 140% with 10% increasement. Fuzzy algorithm were emploeed for detecting the charged refrigerant amount in a system air-conditioner. The experimental data were used for curve fitting for general ranges for indoor and outdoor temperature conditions. membership function were determined for whole ranges of experimentally measured data and rulebase were defined for each amount of refrigerant charge. Developed program successfully predicted the measured data within 10% resolution range.

  • PDF